添加了Stock-Prediction-Models项目的多个文件,包括数据集、模型代码、README文档和CSS样式文件。这些文件用于股票预测模型的训练和展示,涵盖了LSTM、GRU等深度学习模型的应用。
41 lines
1.9 KiB
Python
41 lines
1.9 KiB
Python
import tensorflow as tf
|
|
import numpy as np
|
|
import time
|
|
|
|
def reducedimension(input_, dimension = 2, learning_rate = 0.01, hidden_layer = 256, epoch = 20):
|
|
|
|
input_size = input_.shape[1]
|
|
X = tf.placeholder("float", [None, input_size])
|
|
|
|
weights = {
|
|
'encoder_h1': tf.Variable(tf.random_normal([input_size, hidden_layer])),
|
|
'encoder_h2': tf.Variable(tf.random_normal([hidden_layer, dimension])),
|
|
'decoder_h1': tf.Variable(tf.random_normal([dimension, hidden_layer])),
|
|
'decoder_h2': tf.Variable(tf.random_normal([hidden_layer, input_size])),
|
|
}
|
|
|
|
biases = {
|
|
'encoder_b1': tf.Variable(tf.random_normal([hidden_layer])),
|
|
'encoder_b2': tf.Variable(tf.random_normal([dimension])),
|
|
'decoder_b1': tf.Variable(tf.random_normal([hidden_layer])),
|
|
'decoder_b2': tf.Variable(tf.random_normal([input_size])),
|
|
}
|
|
|
|
first_layer_encoder = tf.nn.sigmoid(tf.add(tf.matmul(X, weights['encoder_h1']), biases['encoder_b1']))
|
|
second_layer_encoder = tf.nn.sigmoid(tf.add(tf.matmul(first_layer_encoder, weights['encoder_h2']), biases['encoder_b2']))
|
|
first_layer_decoder = tf.nn.sigmoid(tf.add(tf.matmul(second_layer_encoder, weights['decoder_h1']), biases['decoder_b1']))
|
|
second_layer_decoder = tf.nn.sigmoid(tf.add(tf.matmul(first_layer_decoder, weights['decoder_h2']), biases['decoder_b2']))
|
|
cost = tf.reduce_mean(tf.pow(X - second_layer_decoder, 2))
|
|
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
|
|
sess = tf.InteractiveSession()
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
for i in range(epoch):
|
|
last_time = time.time()
|
|
_, loss = sess.run([optimizer, cost], feed_dict={X: input_})
|
|
if (i + 1) % 10 == 0:
|
|
print('epoch:', i + 1, 'loss:', loss, 'time:', time.time() - last_time)
|
|
|
|
vectors = sess.run(second_layer_encoder, feed_dict={X: input_})
|
|
tf.reset_default_graph()
|
|
return vectors |