Files
Quant_Code/999.账户相关/simnow_trader/tmp/real_simnow - 2.py

901 lines
47 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
'''
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
该代码的主要目的是处理Tick数据并生成交易信号。代码中定义了一个tickcome函数它接收到Tick数据后会进行一系列的处理包括构建Tick字典、更新上一个Tick的成交量、保存Tick数据、生成K线数据等。其中涉及到的一些函数有
on_tick(tick): 处理单个Tick数据根据Tick数据生成K线数据。
tickdata(df, symbol): 处理Tick数据生成K线数据。
orderflow_df_new(df_tick, df_min, symbol): 处理Tick和K线数据生成订单流数据。
GetOrderFlow_dj(kData): 计算订单流的信号指标。
除此之外代码中还定义了一个MyTrader类继承自TraderApiBase用于实现交易相关的功能。
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
'''
from concurrent.futures import ThreadPoolExecutor
from multiprocessing import Process, Queue
import queue
import threading
from AlgoPlus.CTP.MdApi import run_tick_engine
from AlgoPlus.CTP.FutureAccount import get_simulate_account
from AlgoPlus.CTP.FutureAccount import FutureAccount
from AlgoPlus.CTP.TraderApiBase import TraderApiBase
from AlgoPlus.ta.time_bar import tick_to_bar
import pandas as pd
from datetime import datetime, timedelta
from datetime import time as s_time
import operator
import time
import numpy as np
import os
import re
# 加入邮件通知
import smtplib
from email.mime.text import MIMEText # 导入 MIMEText 类发送纯文本邮件
from email.mime.multipart import MIMEMultipart # 导入 MIMEMultipart 类发送带有附件的邮件
from email.mime.application import MIMEApplication # 导入 MIMEApplication 类发送二进制附件
## 配置邮件信息
receivers = ["240884432@qq.com"] # 设置邮件接收人地址
subject = "订单流策略交易信号" # 设置邮件主题
#text = " " # 设置邮件正文
# file_path = "test.txt" # 设置邮件附件文件路径
## 配置邮件服务器信息
smtp_server = "smtp.qq.com" # 设置发送邮件的 SMTP 服务器地址
smtp_port = 465 # 设置发送邮件的 SMTP 服务器端口号,一般为 25 端口 465
sender = "240884432@qq.com" # 设置发送邮件的邮箱地址
username = "240884432@qq.com" # 设置发送邮件的邮箱用户名
password = "ifjgwlnzdvrfbjgf" #zrmpcgttataabhjh设置发送邮件的邮箱密码或授权码
tickdatadict = {} # 存储Tick数据的字典
quotedict = {} # 存储行情数据的字典
ofdatadict = {} # 存储K线数据的字典
trade_dfs = {} #pd.DataFrame({}) # 存储交易数据的DataFrame对象
previous_volume = {} # 上一个Tick的成交量
tsymbollist={}
clearing_time_dict = {'sc': s_time(2,30), 'bc': s_time(1,0), 'lu': s_time(23,0), 'nr': s_time(23,0),'au': s_time(2,30), 'ag': s_time(2,30),
'ss': s_time(1,0), 'sn': s_time(1,0), 'ni': s_time(1,0), 'pb': s_time(1,0),'zn': s_time(1,0), 'al': s_time(1,0), 'cu': s_time(1,0),
'ru': s_time(23,0), 'rb': s_time(23,0), 'hc': s_time(23,0), 'fu': s_time(23,0), 'bu': s_time(23,0), 'sp': s_time(23,0),
'PF': s_time(23,0), 'SR': s_time(23,0), 'CF': s_time(23,0), 'CY': s_time(23,0), 'RM': s_time(23,0), 'MA': s_time(23,0),
'TA': s_time(23,0), 'ZC': s_time(23,0), 'FG': s_time(23,0), 'OI': s_time(23,0), 'SA': s_time(23,0),
'p': s_time(23,0), 'j': s_time(23,0), 'jm': s_time(23,0), 'i': s_time(23,0), 'l': s_time(23,0), 'v': s_time(23,0),
'pp': s_time(23,0), 'eg': s_time(23,0), 'c': s_time(23,0), 'cs': s_time(23,0), 'y': s_time(23,0), 'm': s_time(23,0),
'a': s_time(23,0), 'b': s_time(23,0), 'rr': s_time(23,0), 'eb': s_time(23,0), 'pg': s_time(23,0)}
def send_mail(text):
msg = MIMEMultipart()
msg["From"] = sender
msg["To"] = ";".join(receivers)
msg["Subject"] = subject
msg.attach(MIMEText(text, "plain", "utf-8"))
smtp = smtplib.SMTP_SSL(smtp_server, smtp_port)
smtp.login(username, password)
smtp.sendmail(sender, receivers, msg.as_string())
smtp.quit()
#交易程序---------------------------------------------------------------------------------------------------------------------------------------------------------------------
class ParamObj:
# 策略需要用到的参数,在新建合约对象的时候传入!!
# 策略需要用到的参数,在新建合约对象的时候传入!!
# 策略需要用到的参数,在新建合约对象的时候传入!!
symbol = None #合约名称
Lots = None #下单手数
py = None #设置委托价格的偏移,更加容易促成成交
trailing_stop_percent = None #跟踪出场参数
fixed_stop_loss_percent = None #固定出场参数
dj_X = None #开仓的堆积参数
delta = None #开仓的delta参数
sum_delta = None #开仓的delta累积参数
失衡=None
堆积=None
周期=None
# 策略需要用到的变量
cont_df = 0
pos = 0
short_trailing_stop_price = 0
long_trailing_stop_price = 0
sl_long_price = 0
sl_shor_price = 0
out_long = 0
out_short = 0
clearing_executed = False
kgdata = True
def __init__(self, symbol, Lots, py, trailing_stop_percent, fixed_stop_loss_percent, dj_X, delta, sum_delta,失衡,堆积,周期):
self.symbol = symbol
self.Lots = Lots
self.py = py
self.trailing_stop_percent = trailing_stop_percent
self.fixed_stop_loss_percent = fixed_stop_loss_percent
self.dj_X = dj_X
self.delta = delta
self.sum_delta = sum_delta
self.失衡=失衡
self.堆积=堆积
self.周期=周期
class MyTrader(TraderApiBase):
def __init__(self, broker_id, td_server, investor_id, password, app_id, auth_code, md_queue=None, page_dir='', private_resume_type=2, public_resume_type=2):
self.param_dict = {}
self.queue_dict = {}
self.品种=' '
# 邮件通知模块
def tickcome(self,md_queue):
global previous_volume
data=md_queue
instrument_id = data['InstrumentID'].decode() # 品种代码
ActionDay = data['ActionDay'].decode() # 交易日日期
update_time = data['UpdateTime'].decode() # 更新时间
update_millisec = str(data['UpdateMillisec']) # 更新毫秒数
created_at = ActionDay[:4] + '-' + ActionDay[4:6] + '-' + ActionDay[6:] + ' ' + update_time + '.' + update_millisec #创建时间
# 构建tick字典
tick = {
'symbol': instrument_id, # 品种代码和交易所ID
'created_at':datetime.strptime(created_at, "%Y-%m-%d %H:%M:%S.%f"),
#'created_at': created_at, # 创建时间
'price': float(data['LastPrice']), # 最新价
'last_volume': int(data['Volume']) - previous_volume.get(instrument_id, 0) if previous_volume.get(instrument_id, 0) != 0 else 0, # 瞬时成交量
'bid_p': float(data['BidPrice1']), # 买价
'bid_v': int(data['BidVolume1']), # 买量
'ask_p': float(data['AskPrice1']), # 卖价
'ask_v': int(data['AskVolume1']), # 卖量
'UpperLimitPrice': float(data['UpperLimitPrice']), # 涨停价
'LowerLimitPrice': float(data['LowerLimitPrice']), # 跌停价
'TradingDay': data['TradingDay'].decode(), # 交易日日期
'cum_volume': int(data['Volume']), # 最新总成交量
'cum_amount': float(data['Turnover']), # 最新总成交额
'cum_position': int(data['OpenInterest']), # 合约持仓量
}
# print('&&&&&&&&',instrument_id, tick['created_at'],'vol:',tick['last_volume'])
# 更新上一个Tick的成交量
previous_volume[instrument_id] = int(data['Volume'])
if tick['last_volume']>0:
#print(tick['created_at'],'vol:',tick['last_volume'])
# 处理Tick数据
self.on_tick(tick)
def can_time(self,hour, minute):
hour = str(hour)
minute = str(minute)
if len(minute) == 1:
minute = "0" + minute
return int(hour + minute)
def on_tick(self,tick):
tm=self.can_time(tick['created_at'].hour,tick['created_at'].minute)
#print(tick['symbol'])
#print(1)
#if tm>1500 and tm<2100 :
# return
if tick['last_volume']==0:
return
quotes = tick
timetick=str(tick['created_at']).replace('+08:00', '')
tsymbol=tick['symbol']
if tsymbol not in tsymbollist.keys():
# 获取tick的买卖价和买卖量
tsymbollist[tsymbol]=tick
bid_p=quotes['bid_p']
ask_p=quotes['ask_p']
bid_v=quotes['bid_v']
ask_v=quotes['ask_v']
else:
# 获取上一个tick的买卖价和买卖量
rquotes =tsymbollist[tsymbol]
bid_p=rquotes['bid_p']
ask_p=rquotes['ask_p']
bid_v=rquotes['bid_v']
ask_v=rquotes['ask_v']
tsymbollist[tsymbol]=tick
tick_dt=pd.DataFrame({'datetime':timetick,'symbol':tick['symbol'],'mainsym':tick['symbol'].rstrip('0123456789').upper(),'lastprice':tick['price'],
'vol':tick['last_volume'],
'bid_p':bid_p,'ask_p':ask_p,'bid_v':bid_v,'ask_v':ask_v},index=[0])
sym = tick_dt['symbol'][0]
#print(tick_dt)
self.tickdata(tick_dt,sym)
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def data_of(self,symbol, df):
global trade_dfs
# 将df数据合并到trader_df中
# if symbol not in trade_dfs.keys():
# trade_df = pd.DataFrame({})
# else:
# trade_df = trade_dfs[symbol]
trade_dfs[symbol] = pd.concat([trade_dfs[symbol], df], ignore_index=True)
# print('!!!!!!!!!!!trader_df: ', symbol, df['datetime'].iloc[-1])
#print(trader_df)
def process(self,bidDict, askDict, symbol):
try:
# 尝试从quotedict中获取对应品种的报价数据
dic = quotedict[symbol]
bidDictResult = dic['bidDictResult']
askDictResult = dic['askDictResult']
except:
# 如果获取失败则初始化bidDictResult和askDictResult为空字典
bidDictResult, askDictResult = {}, {}
# 将所有买盘字典和卖盘字典的key合并并按升序排序
sList = sorted(set(list(bidDict.keys()) + list(askDict.keys())))
# 遍历所有的key将相同key的值进行累加
for s in sList:
if s in bidDict:
if s in bidDictResult:
bidDictResult[s] = int(bidDict[s]) + bidDictResult[s]
else:
bidDictResult[s] = int(bidDict[s])
if s not in askDictResult:
askDictResult[s] = 0
else:
if s in askDictResult:
askDictResult[s] = int(askDict[s]) + askDictResult[s]
else:
askDictResult[s] = int(askDict[s])
if s not in bidDictResult:
bidDictResult[s] = 0
# 构建包含bidDictResult和askDictResult的字典并存入quotedict中
df = {'bidDictResult': bidDictResult, 'askDictResult': askDictResult}
quotedict[symbol] = df
return bidDictResult, askDictResult
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def tickdata(self,df,symbol):
tickdata =pd.DataFrame({'datetime':df['datetime'],'symbol':df['symbol'],'lastprice':df['lastprice'],
'volume':df['vol'],'bid_p':df['bid_p'],'bid_v':df['bid_v'],'ask_p':df['ask_p'],'ask_v':df['ask_v']})
try:
if symbol in tickdatadict.keys():
rdf=tickdatadict[symbol]
rdftm=pd.to_datetime(rdf['bartime'][0]).strftime('%Y-%m-%d %H:%M:%S')
now=str(tickdata['datetime'][0])
if now>rdftm:
try:
oo=ofdatadict[symbol]
self.data_of(symbol, oo)
#print('oo',oo)
if symbol in quotedict.keys():
quotedict.pop(symbol)
if symbol in tickdatadict.keys():
tickdatadict.pop(symbol)
if symbol in ofdatadict.keys():
ofdatadict.pop(symbol)
except IOError as e:
print('rdftm捕获到异常',e)
tickdata['bartime'] = pd.to_datetime(tickdata['datetime'])
tickdata['open'] = tickdata['lastprice']
tickdata['high'] = tickdata['lastprice']
tickdata['low'] = tickdata['lastprice']
tickdata['close'] = tickdata['lastprice']
tickdata['starttime'] = tickdata['datetime']
else:
tickdata['bartime'] = rdf['bartime']
tickdata['open'] = rdf['open']
tickdata['high'] = max(tickdata['lastprice'].values,rdf['high'].values)
tickdata['low'] = min(tickdata['lastprice'].values,rdf['low'].values)
tickdata['close'] = tickdata['lastprice']
tickdata['volume']=df['vol']+rdf['volume'].values
tickdata['starttime'] = rdf['starttime']
else :
print('新bar的第一个tick进入')
tickdata['bartime'] = pd.to_datetime(tickdata['datetime'])
tickdata['open'] = tickdata['lastprice']
tickdata['high'] = tickdata['lastprice']
tickdata['low'] = tickdata['lastprice']
tickdata['close'] = tickdata['lastprice']
tickdata['starttime'] = tickdata['datetime']
except IOError as e:
print('捕获到异常',e)
tickdata['bartime'] = pd.to_datetime(tickdata['bartime'])
param = self.param_dict[self.品种]
bardata = tickdata.resample(on = 'bartime',rule = param.周期,label = 'right',closed = 'right').agg({'starttime':'first','symbol':'last','open':'first','high':'max','low':'min','close':'last','volume':'sum'}).reset_index(drop = False)
bardata =bardata.dropna().reset_index(drop = True)
bardata['bartime'] = pd.to_datetime(bardata['bartime'][0]).strftime('%Y-%m-%d %H:%M:%S')
tickdatadict[symbol]=bardata
tickdata['volume']=df['vol'].values
#print(bardata['symbol'].values,bardata['bartime'].values)
self.orderflow_df_new(tickdata,bardata,symbol)
# time.sleep(0.5)
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def orderflow_df_new(self,df_tick,df_min,symbol):
startArray = pd.to_datetime(df_min['starttime']).values
voluememin= df_min['volume'].values
highs=df_min['high'].values
lows=df_min['low'].values
opens=df_min['open'].values
closes=df_min['close'].values
#endArray = pd.to_datetime(df_min['bartime']).values
endArray = df_min['bartime'].values
#print(endArray)
deltaArray = np.zeros((len(endArray),))
tTickArray = pd.to_datetime(df_tick['datetime']).values
bp1TickArray = df_tick['bid_p'].values
ap1TickArray = df_tick['ask_p'].values
lastTickArray = df_tick['lastprice'].values
volumeTickArray = df_tick['volume'].values
symbolarray = df_tick['symbol'].values
indexFinal = 0
for index,tEnd in enumerate(endArray):
dt=endArray[index]
start = startArray[index]
bidDict = {}
askDict = {}
bar_vol=voluememin[index]
bar_close=closes[index]
bar_open=opens[index]
bar_low=lows[index]
bar_high=highs[index]
bar_symbol=symbolarray[index]
# for indexTick in range(indexFinal,len(df_tick)):
# if tTickArray[indexTick] >= tEnd:
# break
# elif (tTickArray[indexTick] >= start) & (tTickArray[indexTick] < tEnd):
Bp = round(bp1TickArray[0],4)
Ap = round(ap1TickArray[0],4)
LastPrice = round(lastTickArray[0],4)
Volume = volumeTickArray[0]
if LastPrice >= Ap:
if str(LastPrice) in askDict.keys():
askDict[str(LastPrice)] += Volume
else:
askDict[str(LastPrice)] = Volume
if LastPrice <= Bp:
if str(LastPrice) in bidDict.keys():
bidDict[str(LastPrice)] += Volume
else:
bidDict[str(LastPrice)] = Volume
# indexFinal = indexTick
bidDictResult,askDictResult = self.process(bidDict,askDict,symbol)
bidDictResult=dict(sorted(bidDictResult.items(),key=operator.itemgetter(0)))
askDictResult=dict(sorted(askDictResult.items(),key=operator.itemgetter(0)))
prinslist=list(bidDictResult.keys())
asklist=list(askDictResult.values())
bidlist=list(bidDictResult.values())
delta=(sum(askDictResult.values()) - sum(bidDictResult.values()))
#print(prinslist,asklist,bidlist)
#print(len(prinslist),len(bidDictResult),len(askDictResult))
df=pd.DataFrame({'price':pd.Series([prinslist]),'Ask':pd.Series([asklist]),'Bid':pd.Series([bidlist])})
#df=pd.DataFrame({'price':pd.Series(bidDictResult.keys()),'Ask':pd.Series(askDictResult.values()),'Bid':pd.Series(bidDictResult.values())})
df['symbol']=bar_symbol
df['datetime']=dt
df['delta']=str(delta)
df['close']=bar_close
df['open']=bar_open
df['high']=bar_high
df['low']=bar_low
df['volume']=bar_vol
#df['ticktime']=tTickArray[0]
df['dj'] = self.GetOrderFlow_dj(df)
ofdatadict[symbol]=df
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def GetOrderFlow_dj(self,kData):
param = self.param_dict[self.品种]
Config = {
'Value1': param.失衡,
'Value2': param.堆积,
'Value4': True,
}
aryData = kData
djcout = 0
# 遍历kData中的每一行计算djcout指标
for index, row in aryData.iterrows():
kItem = aryData.iloc[index]
high = kItem['high']
low = kItem['low']
close = kItem['close']
open = kItem['open']
dtime = kItem['datetime']
price_s = kItem['price']
Ask_s = kItem['Ask']
Bid_s = kItem['Bid']
delta = kItem['delta']
price_s = price_s
Ask_s = Ask_s
Bid_s = Bid_s
gj = 0
xq = 0
gxx = 0
xxx = 0
# 遍历price_s中的每一个元素计算相关指标
for i in np.arange(0, len(price_s), 1):
duiji = {
'price': 0,
'time': 0,
'longshort': 0,
}
if i == 0:
delta = delta
order= {
"Price":price_s[i],
"Bid":{ "Value":Bid_s[i]},
"Ask":{ "Value":Ask_s[i]}
}
#空头堆积
if i >= 0 and i < len(price_s) - 1:
if (order["Bid"]["Value"] > Ask_s[i + 1] * int(Config['Value1'])):
gxx += 1
gj += 1
if gj >= int(Config['Value2']) and Config['Value4'] == True:
duiji['price'] = price_s[i]
duiji['time'] = dtime
duiji['longshort'] = -1
if float(duiji['price']) > 0:
djcout += -1
else:
gj = 0
#多头堆积
if i >= 1 and i < len(price_s) - 1:
if (order["Ask"]["Value"] > Bid_s[i - 1] * int(Config['Value1'])):
xq += 1
xxx += 1
if xq >= int(Config['Value2']) and Config['Value4'] == True:
duiji['price'] = price_s[i]
duiji['time'] = dtime
duiji['longshort'] = 1
if float(duiji['price']) > 0:
djcout += 1
else:
xq = 0
# 返回计算得到的djcout值
return djcout
#读取保存的数据
def read_to_csv(self,symbol):
# 文件夹路径和文件路径
# 使用正则表达式提取英文字母并重新赋值给symbol
param = self.param_dict[symbol]
# symbol = ''.join(re.findall('[a-zA-Z]', str(symbol)))
folder_path = "traderdata"
file_path = os.path.join(folder_path, f"{str(symbol)}_traderdata.csv")
# 如果文件夹不存在则创建
if not os.path.exists(folder_path):
os.makedirs(folder_path)
# 读取保留的模型数据CSV文件
if os.path.exists(file_path):
df = pd.read_csv(file_path)
if not df.empty and param.kgdata==True:
# 选择最后一行数据
row = df.iloc[-1]
# 根据CSV文件的列名将数据赋值给相应的属性
param.pos = int(row['pos'])
param.short_trailing_stop_price = float(row['short_trailing_stop_price'])
param.long_trailing_stop_price = float(row['long_trailing_stop_price'])
param.sl_long_price = float(row['sl_long_price'])
param.sl_shor_price = float(row['sl_shor_price'])
# param.out_long = int(row['out_long'])
# param.out_short = int(row['out_short'])
print("找到历史交易数据文件,已经更新持仓,止损止盈数据", df.iloc[-1])
param.kgdata=False
else:
pass
#print("没有找到历史交易数据文件", file_path)
#如果没有找到CSV则初始化变量
pass
#保存数据
def save_to_csv(self,symbol):
param = self.param_dict[symbol]
# 使用正则表达式提取英文字母并重新赋值给symbol
# symbol = ''.join(re.findall('[a-zA-Z]', str(symbol)))
# 创建DataFrame
data = {
'datetime': [trade_dfs[symbol]['datetime'].iloc[-1]],
'pos': [param.pos],
'short_trailing_stop_price': [param.short_trailing_stop_price],
'long_trailing_stop_price': [param.long_trailing_stop_price],
'sl_long_price': [param.sl_long_price],
'sl_shor_price': [param.sl_shor_price],
# 'out_long': [param.out_long],
# 'out_short': [param.out_short]
}
df = pd.DataFrame(data)
# 将DataFrame保存到CSV文件
df.to_csv(f"traderdata/{str(symbol)}_traderdata.csv", index=False)
#每日收盘重置数据
def day_data_reset(self, symbol):
param = self.param_dict[symbol]
sec = ''.join(re.findall('[a-zA-Z]', str(symbol)))
# 获取当前时间
current_time = datetime.now().time()
# 第一时间范围(日盘收盘)
clearing_time1_start = s_time(15,00)
clearing_time1_end = s_time(15,15)
# 创建一个标志变量,用于记录是否已经执行过
param.clearing_executed = False
# 检查当前时间第一个操作的时间范围内
if clearing_time1_start <= current_time <= clearing_time1_end and not param.clearing_executed :
param.clearing_executed = True # 设置标志变量为已执行
trade_dfs[symbol].drop(trade_dfs[symbol].index,inplace=True)#清除当天的行情数据
# 检查当前时间是否在第二个操作的时间范围内(夜盘收盘)
elif sec in clearing_time_dict.keys():
clearing_time2_start = clearing_time_dict[sec]
clearing_time2_end = s_time(clearing_time2_start.hour, clearing_time2_start.minute+15)
if clearing_time2_start <= current_time <= clearing_time2_end and not param.clearing_executed :
param.clearing_executed = True # 设置标志变量为已执行
trade_dfs[symbol].drop(trade_dfs[symbol].index,inplace=True) #清除当天的行情数据
else:
param.clearing_executed = False
pass
return param.clearing_executed
def OnRtnTrade(self, pTrade):
print("||成交回报||", pTrade)
def OnRspOrderInsert(self, pInputOrder, pRspInfo, nRequestID, bIsLast):
print("||OnRspOrderInsert||", pInputOrder, pRspInfo, nRequestID, bIsLast)
# 订单状态通知
def OnRtnOrder(self, pOrder):
print("||订单回报||", pOrder)
def cal_sig(self, symbol_queue):
while True:
try:
data = symbol_queue.get(block=True, timeout=5) # 如果5秒没收到新的tick行情则抛出异常
instrument_id = data['InstrumentID'].decode() # 品种代码
size = symbol_queue.qsize()
if size > 1:
print(f'当前{instrument_id}共享队列长度为{size}, 有点阻塞!!!!!')
self.read_to_csv(instrument_id)
self.day_data_reset(instrument_id)
param = self.param_dict[instrument_id]
self.品种=instrument_id
self.tickcome(data)
trade_df = trade_dfs[instrument_id]
#新K线开始启动交易程序 and 保存行情数据
self.read_to_csv(instrument_id)
# size = symbol_queue.qsize()
# if size > 2:
# print(f'!!!!!当前{instrument_id}共享队列长度为:',size)
if len(trade_df)>param.cont_df:
# 检查文件是否存在
csv_file_path = f"traderdata/{instrument_id}_ofdata.csv"
if os.path.exists(csv_file_path):
# 仅保存最后一行数据
trade_df.tail(1).to_csv(csv_file_path, mode='a', header=False, index=False)
else:
# 创建新文件并保存整个DataFrame
trade_df.to_csv(csv_file_path, index=False)
# 更新跟踪止损价格
if param.long_trailing_stop_price >0 and param.pos>0:
#print('datetime+sig: ',dt,'旧多头出线',param.long_trailing_stop_price,'low',self.low[0])
param.long_trailing_stop_price = trade_df['low'].iloc[-1] if param.long_trailing_stop_price<trade_df['low'].iloc[-1] else param.long_trailing_stop_price
self.save_to_csv(instrument_id)
#print('datetime+sig: ',dt,'多头出线',param.long_trailing_stop_price)
if param.short_trailing_stop_price >0 and param.pos<0:
#print('datetime+sig: ',dt,'旧空头出线',param.short_trailing_stop_price,'high',self.high[0])
param.short_trailing_stop_price = trade_df['high'].iloc[-1] if trade_df['high'].iloc[-1] <param.short_trailing_stop_price else param.short_trailing_stop_price
self.save_to_csv(instrument_id)
#print('datetime+sig: ',dt,'空头出线',param.short_trailing_stop_price)
param.out_long=param.long_trailing_stop_price * (1 - param.trailing_stop_percent)
param.out_short=param.short_trailing_stop_price*(1 + param.trailing_stop_percent)
#print('datetime+sig: ',dt,'空头出线',param.out_short)
#print('datetime+sig: ',dt,'多头出线',param.out_long)
# 跟踪出场
if param.out_long >0:
print('datetime+sig: ',trade_df['datetime'].iloc[-1],'预设——多头止盈——','TR',param.out_long,'low', trade_df['low'].iloc[-1])
if trade_df['low'].iloc[-1] < param.out_long and param.pos>0 and param.sl_long_price>0 and trade_df['low'].iloc[-1]>param.sl_long_price:
print('datetime+sig: ',trade_df['datetime'].iloc[-1],'多头止盈','TR',param.out_long,'low', trade_df['low'].iloc[-1])
#平多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
param.long_trailing_stop_price = 0
param.out_long=0
param.sl_long_price=0
param.pos = 0
self.save_to_csv(instrument_id)
if param.out_short>0:
print('datetime+sig: ',trade_df['datetime'].iloc[-1],'预设——空头止盈——: ','TR',param.out_short,'high', trade_df['high'].iloc[-1])
if trade_df['high'].iloc[-1] > param.out_short and param.pos<0 and param.sl_shor_price>0 and trade_df['high'].iloc[-1]<param.sl_shor_price:
print('datetime+sig: ',trade_df['datetime'].iloc[-1],'空头止盈: ','TR',param.out_short,'high', trade_df['high'].iloc[-1])
#平空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
param.short_trailing_stop_price = 0
param.sl_shor_price=0
self.out_shor=0
param.pos = 0
self.save_to_csv(instrument_id)
# 固定止损
fixed_stop_loss_L = param.sl_long_price * (1 - param.fixed_stop_loss_percent)
if param.pos>0:
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '预设——多头止损', 'SL', fixed_stop_loss_L, 'close', trade_df['close'].iloc[-1])
if param.sl_long_price>0 and fixed_stop_loss_L>0 and param.pos > 0 and trade_df['close'].iloc[-1] < fixed_stop_loss_L:
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '多头止损', 'SL', fixed_stop_loss_L, 'close', trade_df['close'].iloc[-1])
#平多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
param.long_trailing_stop_price = 0
param.sl_long_price=0
param.out_long = 0
param.pos = 0
self.save_to_csv(instrument_id)
fixed_stop_loss_S = param.sl_shor_price * (1 + param.fixed_stop_loss_percent)
if param.pos<0:
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '预设——空头止损', 'SL', fixed_stop_loss_S, 'close', trade_df['close'].iloc[-1])
if param.sl_shor_price>0 and fixed_stop_loss_S>0 and param.pos < 0 and trade_df['close'].iloc[-1] > fixed_stop_loss_S:
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '空头止损', 'SL', fixed_stop_loss_S, 'close', trade_df['close'].iloc[-1])
#平空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
param.short_trailing_stop_price = 0
param.sl_shor_price=0
param.out_short = 0
param.pos = 0
self.save_to_csv(instrument_id)
#日均线
trade_df['dayma']=trade_df['close'].mean()
# 计算累积的delta值
trade_df['delta'] = trade_df['delta'].astype(float)
trade_df['delta累计'] = trade_df['delta'].cumsum()
#大于日均线
开多1=trade_df['dayma'].iloc[-1] > 0 and trade_df['close'].iloc[-1] > trade_df['dayma'].iloc[-1]
#累计多空净量大于X
开多4=trade_df['delta累计'].iloc[-1] > param.sum_delta and trade_df['delta'].iloc[-1] > param.delta
#小于日均线
开空1=trade_df['dayma'].iloc[-1]>0 and trade_df['close'].iloc[-1] < trade_df['dayma'].iloc[-1]
#累计多空净量小于X
开空4=trade_df['delta累计'].iloc[-1] < -param.sum_delta and trade_df['delta'].iloc[-1] < -param.delta
开多组合= 开多1 and 开多4 and trade_df['dj'].iloc[-1]>param.dj_X
开空条件= 开空1 and 开空4 and trade_df['dj'].iloc[-1]<-param.dj_X
平多条件=trade_df['dj'].iloc[-1]<-param.dj_X
平空条件=trade_df['dj'].iloc[-1]>param.dj_X
#开仓
#多头开仓条件
if param.pos<0 and 平空条件 :
print('平空: ','ExchangeID: ',data['ExchangeID'],'InstrumentID',data['InstrumentID'],'AskPrice1',data['AskPrice1']+param.py)
#平空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
param.pos=0
param.sl_shor_price=0
param.short_trailing_stop_price=0
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '反手平空:', '平仓价格:', data['AskPrice1']+param.py,'堆积数:', trade_df['dj'].iloc[-1])
self.save_to_csv(instrument_id)
# 发送邮件
text = f"平空交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平空的平仓价格{data['AskPrice1']+self.py}"
send_mail(text)
if param.pos==0 and 开多组合:
print('开多: ','ExchangeID: ',data['ExchangeID'],'InstrumentID',data['InstrumentID'],'AskPrice1',data['AskPrice1']+param.py)
#开多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'0')
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '多头开仓', '开仓价格:', data['AskPrice1']+param.py,'堆积数:', trade_df['dj'].iloc[-1])
param.pos=1
param.long_trailing_stop_price=data['AskPrice1']
param.sl_long_price=data['AskPrice1']
self.save_to_csv(instrument_id)
# 发送邮件
text = f"开多交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 多头开仓的开仓价格{data['AskPrice1']+self.py}"
send_mail(text)
if param.pos>0 and 平多条件 :
print('平多: ','ExchangeID: ',data['ExchangeID'],'InstrumentID',data['InstrumentID'],'BidPrice1',data['BidPrice1']-param.py)
#平多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
param.pos=0
param.long_trailing_stop_price=0
param.sl_long_price=0
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '反手平多', '平仓价格:', data['BidPrice1']-param.py,'堆积数:', trade_df['dj'].iloc[-1])
self.save_to_csv(instrument_id)
#发送邮件
text = f"平多交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平多的平仓价格{data['BidPrice1']-self.py}"
send_mail(text)
if param.pos==0 and 开空条件 :
print('开空: ','ExchangeID: ',data['ExchangeID'],'InstrumentID',data['InstrumentID'],'BidPrice1',data['BidPrice1'])
#开空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'0')
print('datetime+sig: ', trade_df['datetime'].iloc[-1], '空头开仓', '开仓价格:', data['BidPrice1']-param.py,'堆积数:', trade_df['dj'].iloc[-1])
param.pos=-1
param.short_trailing_stop_price=data['BidPrice1']
param.sl_shor_price=data['BidPrice1']
self.save_to_csv(instrument_id)
# 发送邮件
text = f"开空交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 空头开仓的开仓价格{data['BidPrice1']-self.py}"
send_mail(text)
print(trade_df)
param.cont_df=len(trade_df)
except queue.Empty:
# print(f"当前合约队列为空,等待新数据插入。")
pass
# 将CTP推送的行情数据分发给对应线程队列去执行
def distribute_tick(self):
while True:
if self.status == 0:
data = None
while not self.md_queue.empty():
data = self.md_queue.get(block=False)
instrument_id = data['InstrumentID'].decode() # 品种代码
try:
self.queue_dict[instrument_id].put(data, block=False) # 往对应合约队列中插入行情
# print(f"{instrument_id}合约数据插入。")
except queue.Full:
# 当某个线程阻塞导致对应队列容量超限时抛出异常,不会影响其他合约的信号计算
print(f"{instrument_id}合约信号计算阻塞导致对应队列已满,请检查对应代码逻辑后重启。")
else:
time.sleep(1)
def start(self, param_dict):
threads = []
self.param_dict = param_dict
for symbol in param_dict.keys():
trade_dfs[symbol] = pd.DataFrame({})
self.queue_dict[symbol] = queue.Queue(20) #为每个合约创建一个限制数为10的队列当计算发生阻塞导致队列达到限制数时会抛出异常
t = threading.Thread(target=self.cal_sig, args=(self.queue_dict[symbol],)) # 为每个合约单独创建一个线程计算开仓逻辑
threads.append(t)
t.start()
self.distribute_tick()
for t in threads:
t.join()
def run_trader(param_dict, broker_id, td_server, investor_id, password, app_id, auth_code, md_queue=None, page_dir='', private_resume_type=2, public_resume_type=2):
my_trader = MyTrader(broker_id, td_server, investor_id, password, app_id, auth_code, md_queue, page_dir, private_resume_type, public_resume_type)
my_trader.start(param_dict)
if __name__ == '__main__':
#global symbol
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
# current_directory = os.getcwd()
# print("当前工作目录:", current_directory)
# # 设置新的工作目录
# new_directory = 'C:/simnow_trader'
# os.chdir(new_directory)
# # 验证新的工作目录
# updated_directory = os.getcwd()
# print("已更改为新的工作目录:", updated_directory)
#注意运行前请先安装好algoplus,
# pip install AlgoPlus
#http://www.algo.plus/ctp/python/0103001.html
# 实盘参数字典,需要实盘交易的合约,新建对应的参数对象即可,以下参数仅供测试使用,不作为实盘参考!!!!
# 实盘参数字典,需要实盘交易的合约,新建对应的参数对象即可,以下参数仅供测试使用,不作为实盘参考!!!!
# 实盘参数字典,需要实盘交易的合约,新建对应的参数对象即可,以下参数仅供测试使用,不作为实盘参考!!!!
param_dict = {}
# param_dict['rb2410'] = ParamObj(symbol='rb2410', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=1,delta=1500,sum_delta=2000,失衡=3,堆积=3,周期='1T')
# param_dict['ni2406'] = ParamObj(symbol='ni2405', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=0,delta=1500,sum_delta=2000,失衡=3,堆积=3,周期='1T')
param_dict['j2409'] = ParamObj(symbol='j2405', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=0,delta=15,sum_delta=20,失衡=3,堆积=3,周期='1T')
param_dict['TA409'] = ParamObj(symbol='TA405', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=0,delta=15,sum_delta=20,失衡=3,堆积=3,周期='1T')
# param_dict['ag24g08'] = ParamObj(symbol='au2406', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=0,delta=15,sum_delta=20,失衡=3,堆积=3,周期='1T')
param_dict['sc2406'] = ParamObj(symbol='sc2405', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=0,delta=15,sum_delta=20,失衡=3,堆积=3,周期='1T')
# param_dict['bc2406'] = ParamObj(symbol='bc2406', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=0,delta=15,sum_delta=20,失衡=3,堆积=3,周期='1T')
# param_dict['lu2407'] = ParamObj(symbol='lu2406', Lots=1, py=5, trailing_stop_percent=0.02, fixed_stop_loss_percent=0.01,dj_X=0,delta=15,sum_delta=20,失衡=3,堆积=3,周期='1T')
#用simnow模拟不要忘记屏蔽下方实盘的future_account字典,A:7*24股票模拟环境交易前置 tcp://210.14.72.15:44007*24股票模拟环境行情前置 tcp://210.14.72.15:4402;
#B:7*24股票模拟环境交易前置 tcp://210.14.72.16:9500 7*24股票模拟环境行情前置 tcp://210.14.72.16:9402
future_account = get_simulate_account(
investor_id='223828', # simnow账户:'135858'&'223828'注意是登录账户的IDSIMNOW个人首页查看N视界:00641394TTS:1148
password='Zj1234!@#%', # simnow密码:'Zj82334475'&'Zj1234!@#$',N视界:29109937,TTS:123456
server_name='TEST', # 电信1、电信2、移动、TEST、N视界:
subscribe_list=list(param_dict.keys()), # 合约列表
)
#实盘用这个不要忘记屏蔽上方simnow的future_account字典
# future_account = FutureAccount(
# broker_id='8888', # 期货公司BrokerID
# server_dict={'TDServer': "103.140.14.210:43205", 'MDServer': '103.140.14.210:43173'}, # TDServer为交易服务器MDServer为行情服务器。服务器地址格式为"ip:port。"
# reserve_server_dict={}, # 备用服务器地址
# investor_id='***', # 账户
# password='***', # 密码
# app_id='vntech_vnpy_2.0', # 认证使用AppID
# auth_code='N46EKN6TJ9U7V06V', # 认证使用授权码
# subscribe_list=list(param_dict.keys()), # 订阅合约列表
# md_flow_path='./log', # MdApi流文件存储地址默认MD_LOCATION
# td_flow_path='./log', # TraderApi流文件存储地址默认TD_LOCATION
# )
print('开始',len(future_account.subscribe_list))
# 共享队列
share_queue = Queue(maxsize=200)
# 行情进程
md_process = Process(target=run_tick_engine, args=(future_account, [share_queue]))
# 交易进程
trader_process = Process(target=run_trader, args=(
param_dict,
future_account.broker_id,
future_account.server_dict['TDServer'],
future_account.investor_id,
future_account.password,
future_account.app_id,
future_account.auth_code,
share_queue, # 队列
future_account.td_flow_path
))
md_process.start()
trader_process.start()
md_process.join()
trader_process.join()