Files
zhoujie2104231 2757a4d0d2 chore: 添加Stock-Prediction-Models项目文件
添加了Stock-Prediction-Models项目的多个文件,包括数据集、模型代码、README文档和CSS样式文件。这些文件用于股票预测模型的训练和展示,涵盖了LSTM、GRU等深度学习模型的应用。
2025-04-27 16:28:06 +08:00

394 lines
13 KiB
Python

from flask import Flask, request, jsonify
import numpy as np
import pickle
import json
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
from datetime import datetime
app = Flask(__name__)
window_size = 20
skip = 1
layer_size = 500
output_size = 3
def softmax(z):
assert len(z.shape) == 2
s = np.max(z, axis=1)
s = s[:, np.newaxis]
e_x = np.exp(z - s)
div = np.sum(e_x, axis=1)
div = div[:, np.newaxis]
return e_x / div
def get_state(parameters, t, window_size = 20):
outside = []
d = t - window_size + 1
for parameter in parameters:
block = (
parameter[d : t + 1]
if d >= 0
else -d * [parameter[0]] + parameter[0 : t + 1]
)
res = []
for i in range(window_size - 1):
res.append(block[i + 1] - block[i])
for i in range(1, window_size, 1):
res.append(block[i] - block[0])
outside.append(res)
return np.array(outside).reshape((1, -1))
class Deep_Evolution_Strategy:
inputs = None
def __init__(
self, weights, reward_function, population_size, sigma, learning_rate
):
self.weights = weights
self.reward_function = reward_function
self.population_size = population_size
self.sigma = sigma
self.learning_rate = learning_rate
def _get_weight_from_population(self, weights, population):
weights_population = []
for index, i in enumerate(population):
jittered = self.sigma * i
weights_population.append(weights[index] + jittered)
return weights_population
def get_weights(self):
return self.weights
def train(self, epoch = 100, print_every = 1):
lasttime = time.time()
for i in range(epoch):
population = []
rewards = np.zeros(self.population_size)
for k in range(self.population_size):
x = []
for w in self.weights:
x.append(np.random.randn(*w.shape))
population.append(x)
for k in range(self.population_size):
weights_population = self._get_weight_from_population(
self.weights, population[k]
)
rewards[k] = self.reward_function(weights_population)
rewards = (rewards - np.mean(rewards)) / (np.std(rewards) + 1e-7)
for index, w in enumerate(self.weights):
A = np.array([p[index] for p in population])
self.weights[index] = (
w
+ self.learning_rate
/ (self.population_size * self.sigma)
* np.dot(A.T, rewards).T
)
if (i + 1) % print_every == 0:
print(
'iter %d. reward: %f'
% (i + 1, self.reward_function(self.weights))
)
print('time taken to train:', time.time() - lasttime, 'seconds')
class Model:
def __init__(self, input_size, layer_size, output_size):
self.weights = [
np.random.rand(input_size, layer_size)
* np.sqrt(1 / (input_size + layer_size)),
np.random.rand(layer_size, output_size)
* np.sqrt(1 / (layer_size + output_size)),
np.zeros((1, layer_size)),
np.zeros((1, output_size)),
]
def predict(self, inputs):
feed = np.dot(inputs, self.weights[0]) + self.weights[-2]
decision = np.dot(feed, self.weights[1]) + self.weights[-1]
return decision
def get_weights(self):
return self.weights
def set_weights(self, weights):
self.weights = weights
class Agent:
POPULATION_SIZE = 15
SIGMA = 0.1
LEARNING_RATE = 0.03
def __init__(self, model, timeseries, skip, initial_money, real_trend, minmax):
self.model = model
self.timeseries = timeseries
self.skip = skip
self.real_trend = real_trend
self.initial_money = initial_money
self.es = Deep_Evolution_Strategy(
self.model.get_weights(),
self.get_reward,
self.POPULATION_SIZE,
self.SIGMA,
self.LEARNING_RATE,
)
self.minmax = minmax
self._initiate()
def _initiate(self):
# i assume first index is the close value
self.trend = self.timeseries[0]
self._mean = np.mean(self.trend)
self._std = np.std(self.trend)
self._inventory = []
self._capital = self.initial_money
self._queue = []
self._scaled_capital = self.minmax.transform([[self._capital, 2]])[0, 0]
def reset_capital(self, capital):
if capital:
self._capital = capital
self._scaled_capital = self.minmax.transform([[self._capital, 2]])[0, 0]
self._queue = []
self._inventory = []
def trade(self, data):
"""
you need to make sure the data is [close, volume]
"""
scaled_data = self.minmax.transform([data])[0]
real_close = data[0]
close = scaled_data[0]
if len(self._queue) >= window_size:
self._queue.pop(0)
self._queue.append(scaled_data)
if len(self._queue) < window_size:
return {
'status': 'data not enough to trade',
'action': 'fail',
'balance': self._capital,
'timestamp': str(datetime.now()),
}
state = self.get_state(
window_size - 1,
self._inventory,
self._scaled_capital,
timeseries = np.array(self._queue).T.tolist(),
)
action, prob = self.act_softmax(state)
print(prob)
if action == 1 and self._scaled_capital >= close:
self._inventory.append(close)
self._scaled_capital -= close
self._capital -= real_close
return {
'status': 'buy 1 unit, cost %f' % (real_close),
'action': 'buy',
'balance': self._capital,
'timestamp': str(datetime.now()),
}
elif action == 2 and len(self._inventory):
bought_price = self._inventory.pop(0)
self._scaled_capital += close
self._capital += real_close
scaled_bought_price = self.minmax.inverse_transform(
[[bought_price, 2]]
)[0, 0]
try:
invest = (
(real_close - scaled_bought_price) / scaled_bought_price
) * 100
except:
invest = 0
return {
'status': 'sell 1 unit, price %f' % (real_close),
'investment': invest,
'gain': real_close - scaled_bought_price,
'balance': self._capital,
'action': 'sell',
'timestamp': str(datetime.now()),
}
else:
return {
'status': 'do nothing',
'action': 'nothing',
'balance': self._capital,
'timestamp': str(datetime.now()),
}
def change_data(self, timeseries, skip, initial_money, real_trend, minmax):
self.timeseries = timeseries
self.skip = skip
self.initial_money = initial_money
self.real_trend = real_trend
self.minmax = minmax
self._initiate()
def act(self, sequence):
decision = self.model.predict(np.array(sequence))
return np.argmax(decision[0])
def act_softmax(self, sequence):
decision = self.model.predict(np.array(sequence))
return np.argmax(decision[0]), softmax(decision)[0]
def get_state(self, t, inventory, capital, timeseries):
state = get_state(timeseries, t)
len_inventory = len(inventory)
if len_inventory:
mean_inventory = np.mean(inventory)
else:
mean_inventory = 0
z_inventory = (mean_inventory - self._mean) / self._std
z_capital = (capital - self._mean) / self._std
concat_parameters = np.concatenate(
[state, [[len_inventory, z_inventory, z_capital]]], axis = 1
)
return concat_parameters
def get_reward(self, weights):
initial_money = self._scaled_capital
starting_money = initial_money
invests = []
self.model.weights = weights
inventory = []
state = self.get_state(0, inventory, starting_money, self.timeseries)
for t in range(0, len(self.trend) - 1, self.skip):
action = self.act(state)
if action == 1 and starting_money >= self.trend[t]:
inventory.append(self.trend[t])
starting_money -= self.trend[t]
elif action == 2 and len(inventory):
bought_price = inventory.pop(0)
starting_money += self.trend[t]
invest = ((self.trend[t] - bought_price) / bought_price) * 100
invests.append(invest)
state = self.get_state(
t + 1, inventory, starting_money, self.timeseries
)
invests = np.mean(invests)
if np.isnan(invests):
invests = 0
score = (starting_money - initial_money) / initial_money * 100
return invests * 0.7 + score * 0.3
def fit(self, iterations, checkpoint):
self.es.train(iterations, print_every = checkpoint)
def buy(self):
initial_money = self._scaled_capital
starting_money = initial_money
real_initial_money = self.initial_money
real_starting_money = self.initial_money
inventory = []
real_inventory = []
state = self.get_state(0, inventory, starting_money, self.timeseries)
states_sell = []
states_buy = []
for t in range(0, len(self.trend) - 1, self.skip):
action, prob = self.act_softmax(state)
print(t, prob)
if action == 1 and starting_money >= self.trend[t] and t < (len(self.trend) - 1 - window_size):
inventory.append(self.trend[t])
real_inventory.append(self.real_trend[t])
real_starting_money -= self.real_trend[t]
starting_money -= self.trend[t]
states_buy.append(t)
print(
'day %d: buy 1 unit at price %f, total balance %f'
% (t, self.real_trend[t], real_starting_money)
)
elif action == 2 and len(inventory):
bought_price = inventory.pop(0)
real_bought_price = real_inventory.pop(0)
starting_money += self.trend[t]
real_starting_money += self.real_trend[t]
states_sell.append(t)
try:
invest = (
(self.real_trend[t] - real_bought_price)
/ real_bought_price
) * 100
except:
invest = 0
print(
'day %d, sell 1 unit at price %f, investment %f %%, total balance %f,'
% (t, self.real_trend[t], invest, real_starting_money)
)
state = self.get_state(
t + 1, inventory, starting_money, self.timeseries
)
invest = (
(real_starting_money - real_initial_money) / real_initial_money
) * 100
total_gains = real_starting_money - real_initial_money
return states_buy, states_sell, total_gains, invest
with open('model.pkl', 'rb') as fopen:
model = pickle.load(fopen)
df = pd.read_csv('TWTR.csv')
real_trend = df['Close'].tolist()
parameters = [df['Close'].tolist(), df['Volume'].tolist()]
minmax = MinMaxScaler(feature_range = (100, 200)).fit(np.array(parameters).T)
scaled_parameters = minmax.transform(np.array(parameters).T).T.tolist()
initial_money = np.max(parameters[0]) * 2
agent = Agent(model = model,
timeseries = scaled_parameters,
skip = skip,
initial_money = initial_money,
real_trend = real_trend,
minmax = minmax)
@app.route('/', methods = ['GET'])
def hello():
return jsonify({'status': 'OK'})
@app.route('/inventory', methods = ['GET'])
def inventory():
return jsonify(agent._inventory)
@app.route('/queue', methods = ['GET'])
def queue():
return jsonify(agent._queue)
@app.route('/balance', methods = ['GET'])
def balance():
return jsonify(agent._capital)
@app.route('/trade', methods = ['GET'])
def trade():
data = json.loads(request.args.get('data'))
return jsonify(agent.trade(data))
@app.route('/reset', methods = ['GET'])
def reset():
money = json.loads(request.args.get('money'))
agent.reset_capital(money)
return jsonify(True)
if __name__ == '__main__':
app.run(host = '0.0.0.0', port = 8005)