Enhance trading workflow with new order flow management

- Added dingdanliu_nb_mflow for improved order processing
- Updated related scripts and configurations to support new functionality
This commit is contained in:
Win_home
2025-03-15 22:45:08 +08:00
parent e2c54c6409
commit f925dff46b
21 changed files with 5345 additions and 0 deletions

View File

@@ -0,0 +1,180 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# 配置迅投研数据服务\n",
"from vnpy.trader.setting import SETTINGS\n",
"\n",
"SETTINGS[\"datafeed.name\"] = \"xt\"\n",
"SETTINGS[\"datafeed.username\"] = \"token\"\n",
"SETTINGS[\"datafeed.password\"] = \"ef326f853a744c58572f0158d470912c38a09552\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# 加载功能模块\n",
"from datetime import datetime\n",
"\n",
"from vnpy.trader.datafeed import get_datafeed\n",
"from vnpy.trader.object import HistoryRequest, Exchange, Interval\n",
"\n",
"from vnpy_sqlite import Database as SqliteDatabase\n",
"#from elite_database import Database as EliteDatabase\n",
"\n",
"#增加\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 初始化数据服务\n",
"datafeed = get_datafeed()\n",
"datafeed.init()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# 交易所映射关系\n",
"EXCHANGE_XT2VT = {\n",
" \"SH\": Exchange.SSE,\n",
" \"SZ\": Exchange.SZSE,\n",
" \"BJ\": Exchange.BSE,\n",
" \"SF\": Exchange.SHFE,\n",
" \"IF\": Exchange.CFFEX,\n",
" \"INE\": Exchange.INE,\n",
" \"DF\": Exchange.DCE,\n",
" \"ZF\": Exchange.CZCE,\n",
" \"GF\": Exchange.GFEX\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"数据长度 41336\n"
]
}
],
"source": [
"# 查询期货历史数据\n",
"req = HistoryRequest(\n",
" symbol=\"rb00\", # 加权指数 \n",
" # symbol=\"IF00\", # 主力连续(未平滑)\n",
" # exchange=Exchange.CFFEX,\n",
" exchange = EXCHANGE_XT2VT[\"SF\"],\n",
" start=datetime(2023, 1, 1),\n",
" end=datetime(2023, 11, 24),#end=datetime.now(),\n",
" interval=Interval.TICK\n",
")\n",
"\n",
"ticks = datafeed.query_tick_history(req)\n",
"print(\"数据长度\", len(ticks))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 创建Elite数据库实例并写入数据\n",
"#db2 = EliteDatabase()\n",
"#db2.save_bar_data(bars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(ticks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 创建CSV文件并写入数据\n",
"filepath = \"rb00_11.csv\" # CSV文件保存路径及文件名\n",
"df.to_csv(filepath, index=False) # index参数设置为False表示不包含索引列\n",
"#df.to_csv(filepath, mode='a', index=False, header=False) # index参数设置为False表示不包含索引列"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 读取CSV文件\n",
"data = pd.read_csv(\"IC0.csv\")\n",
"# 对数据进行排序\n",
"sorted_data = data.sort_values(by='datetime')\n",
"# 将排序结果写入CSV文件\n",
"sorted_data.to_csv('sort_IC00.csv', index=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"vscode": {
"interpreter": {
"hash": "1b43cb0bd93d5abbadd54afed8252f711d4681fe6223ad6b67ffaee289648f85"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}