- Added dingdanliu_nb_mflow for improved order processing - Updated related scripts and configurations to support new functionality
181 lines
4.2 KiB
Plaintext
181 lines
4.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# 配置迅投研数据服务\n",
|
|
"from vnpy.trader.setting import SETTINGS\n",
|
|
"\n",
|
|
"SETTINGS[\"datafeed.name\"] = \"xt\"\n",
|
|
"SETTINGS[\"datafeed.username\"] = \"token\"\n",
|
|
"SETTINGS[\"datafeed.password\"] = \"ef326f853a744c58572f0158d470912c38a09552\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# 加载功能模块\n",
|
|
"from datetime import datetime\n",
|
|
"\n",
|
|
"from vnpy.trader.datafeed import get_datafeed\n",
|
|
"from vnpy.trader.object import HistoryRequest, Exchange, Interval\n",
|
|
"\n",
|
|
"from vnpy_sqlite import Database as SqliteDatabase\n",
|
|
"#from elite_database import Database as EliteDatabase\n",
|
|
"\n",
|
|
"#增加\n",
|
|
"import pandas as pd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"True"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# 初始化数据服务\n",
|
|
"datafeed = get_datafeed()\n",
|
|
"datafeed.init()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# 交易所映射关系\n",
|
|
"EXCHANGE_XT2VT = {\n",
|
|
" \"SH\": Exchange.SSE,\n",
|
|
" \"SZ\": Exchange.SZSE,\n",
|
|
" \"BJ\": Exchange.BSE,\n",
|
|
" \"SF\": Exchange.SHFE,\n",
|
|
" \"IF\": Exchange.CFFEX,\n",
|
|
" \"INE\": Exchange.INE,\n",
|
|
" \"DF\": Exchange.DCE,\n",
|
|
" \"ZF\": Exchange.CZCE,\n",
|
|
" \"GF\": Exchange.GFEX\n",
|
|
"}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"数据长度 41336\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# 查询期货历史数据\n",
|
|
"req = HistoryRequest(\n",
|
|
" symbol=\"rb00\", # 加权指数 \n",
|
|
" # symbol=\"IF00\", # 主力连续(未平滑)\n",
|
|
" # exchange=Exchange.CFFEX,\n",
|
|
" exchange = EXCHANGE_XT2VT[\"SF\"],\n",
|
|
" start=datetime(2023, 1, 1),\n",
|
|
" end=datetime(2023, 11, 24),#end=datetime.now(),\n",
|
|
" interval=Interval.TICK\n",
|
|
")\n",
|
|
"\n",
|
|
"ticks = datafeed.query_tick_history(req)\n",
|
|
"print(\"数据长度\", len(ticks))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# 创建Elite数据库实例并写入数据\n",
|
|
"#db2 = EliteDatabase()\n",
|
|
"#db2.save_bar_data(bars)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df = pd.DataFrame(ticks)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# 创建CSV文件并写入数据\n",
|
|
"filepath = \"rb00_11.csv\" # CSV文件保存路径及文件名\n",
|
|
"df.to_csv(filepath, index=False) # index参数设置为False表示不包含索引列\n",
|
|
"#df.to_csv(filepath, mode='a', index=False, header=False) # index参数设置为False表示不包含索引列"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# 读取CSV文件\n",
|
|
"data = pd.read_csv(\"IC0.csv\")\n",
|
|
"# 对数据进行排序\n",
|
|
"sorted_data = data.sort_values(by='datetime')\n",
|
|
"# 将排序结果写入CSV文件\n",
|
|
"sorted_data.to_csv('sort_IC00.csv', index=False)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.9"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "1b43cb0bd93d5abbadd54afed8252f711d4681fe6223ad6b67ffaee289648f85"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|