{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "root_path = r\"E:/data/ag\"\n", "output_path = r\"E:/data/ag/ag888.csv\"\n", "# df_tmp = pd.read_csv('E:/data/rb/rb888_2023.csv',encoding=\"utf-8\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "files = []\n", "\n", "for r, ds, fs in os.walk(root_path):\n", " for f in fs:\n", " # if f[0:4] == '2023':\n", " abs_filepath = os.path.join(r, f)\n", " files.append(abs_filepath)\n", "files = sorted(files)\n", "\n", "df = pd.DataFrame()\n", "for f in files:\n", " df_temp = pd.read_csv(\n", " f,\n", " usecols=[0, 1, 2, 5, 12, 21, 22, 23, 24, 25, 26, 44],\n", " names=[\n", " \"交易日\",\n", " \"统一代码\",\n", " \"合约代码\",\n", " \"最新价\",\n", " \"数量\",\n", " \"最后修改时间\",\n", " \"最后修改毫秒\",\n", " \"申买价一\",\n", " \"申买量一\",\n", " \"申卖价一\",\n", " \"申卖量一\",\n", " \"业务日期\",\n", " ],\n", " skiprows=1,\n", " encoding=\"utf-8\",\n", " )\n", " # df_temp = pd.read_csv(f, usecols=[0,5], names=[\n", " # 'datetime', 'volume'])\n", " df = pd.concat([df, df_temp])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.tail()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#df_tmp = pd.read_csv('E:/data/rb/rb888_2023.csv',encoding=\"utf-8\")\n", "#df_tmp.tail()\n", "#df_tmp.tail().to_csv(\"E:/data/rb/rb_tail.csv\",index= False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.reset_index(drop=True, inplace=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.info()\n", "# 21754840" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.loc[2493107:2493111]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 等比复权,先不考虑\n", "# df['复权因子'] = df['卖一价'].shift() / df['买一价']\n", "df['复权因子'] = np.where(df['合约代码'] != df['合约代码'].shift(), df['卖一价'].shift() / df['买一价'], 1)\n", "df['复权因子'] = df['复权因子'].fillna(1)\n", "# df['复权因子'].loc[0] = 1\n", "df['买一价_adj'] = df['买一价'] * df['复权因子'].cumprod()\n", "df['卖一价_adj'] = df['卖一价'] * df['复权因子'].cumprod()\n", "df['最新_adj'] = df['最新'] * df['复权因子'].cumprod()\n", "# df['low_adj'] = df['low'] * adjust.cumprod()\n", "# df['high_adj'] = df['high'] * adjust.cumprod()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 等差复权\n", "df['复权因子'] = np.where(df['合约代码'] != df['合约代码'].shift(), df['申卖价一'].shift() - df['申买价一'], 0)\n", "df['复权因子'] = df['复权因子'].fillna(0)\n", "# df['复权因子'].loc[0] = 1\n", "df['申买价一_adj'] = df['申买价一'] + df['复权因子'].cumsum()\n", "df['申卖价一_adj'] = df['申卖价一'] + df['复权因子'].cumsum()\n", "df['最新价_adj'] = df['最新价'] + df['复权因子'].cumsum()\n", "# df['low_adj'] = df['low'] + df['复权因子'].cumsum()\n", "# df['high_adj'] = df['high'] + df['复权因子'].cumsum()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.loc[391880:391890]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df['申买价一'] = df['申买价一_adj']\n", "df['申卖价一'] = df['申卖价一_adj']\n", "df['最新价'] = df['最新价_adj']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.loc[391880:391890]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "non_zero_indices = df[df['复权因子'] != 0].index" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(non_zero_indices)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# df.drop('复权因子', axis=1)\n", "# df.drop('买一价_adj', axis=1)\n", "# df.drop('卖一价_adj', axis=1)\n", "del df['复权因子']\n", "del df['申买价一_adj']\n", "del df['申卖价一_adj']\n", "del df['最新价_adj']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.loc[391880:391890]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.to_csv(output_path, index=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.head().to_csv(\"E:/data/rb/rb_ch_temp.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "drop_index1 = df.query('最后修改时间>\"15:00:00\" & 最后修改时间<\"21:00:00\"')[\n", " \"最后修改时间\"\n", "].index\n", "# drop_index1 = df.query('最后修改时间>\"15:00:00\"')[\"最后修改时间\"].index\n", "# drop_index2 = df.query('最后修改时间>\"01:00:00\" & 最后修改时间<\"09:00:00\"')[\"最后修改时间\"].index\n", "# drop_index2 = df.query('最后修改时间>\"01:00:00\" & 最后修改时间<\"09:00:00\"')[\"最后修改时间\"].index\n", "drop_index2 = df.query('最后修改时间<\"09:00:00\"')[\"最后修改时间\"].index\n", "drop_index3 = df.query('最后修改时间>\"23:00:00\" & 最后修改时间<\"23:59:59\"')[\n", " \"最后修改时间\"\n", "].index\n", "drop_index4 = df.query('最后修改时间>\"11:30:00\" & 最后修改时间<\"13:30:00\"')[\n", " \"最后修改时间\"\n", "].index" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.drop(labels=drop_index1, axis=0, inplace=True)\n", "df.drop(drop_index2, axis=0, inplace=True)\n", "df.drop(drop_index3, axis=0, inplace=True)\n", "df.drop(drop_index4, axis=0, inplace=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.tail()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.reset_index(drop=True, inplace=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[\"datetime\"] = pd.to_datetime(\n", " pd.to_datetime(df[\"交易日\"].astype(str)).astype(str)\n", " + \" \"\n", " + df[\"最后修改时间\"].astype(str)\n", " + \".\"\n", " + df[\"最后修改毫秒\"].astype(str)\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.tail()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.rename(\n", " columns={\n", " \"最新价\": \"lastprice\",\n", " \"数量\": \"volume\",\n", " \"申买价一\": \"bid_p\",\n", " \"申买量一\": \"bid_v\",\n", " \"申卖价一\": \"ask_p\",\n", " \"申卖量一\": \"ask_v\",\n", " \"合约代码\": \"symbol\",\n", " },\n", " inplace=True,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[\"vol_diff\"] = df[\"volume\"].diff()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.loc[df[\"vol_diff\"].isnull(), \"vol_diff\"] = df.loc[df[\"vol_diff\"].isnull(), \"volume\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[\"volume\"] = df[\"vol_diff\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.to_csv(output_path)" ] } ], "metadata": { "kernelspec": { "display_name": "orderflow", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }