""" 该代码的主要目的是处理Tick数据并生成交易信号。代码中定义了一个tickcome函数,它接收到Tick数据后会进行一系列的处理,包括构建Tick字典、更新上一个Tick的成交量、保存Tick数据、生成K线数据等。其中涉及到的一些函数有: on_tick(tick): 处理单个Tick数据,根据Tick数据生成K线数据。 tickdata(df, symbol): 处理Tick数据,生成K线数据。 orderflow_df_new(df_tick, df_min, symbol): 处理Tick和K线数据,生成订单流数据。 GetOrderFlow_dj(kData): 计算订单流的信号指标。 除此之外,代码中还定义了一个MyTrader类,继承自TraderApiBase,用于实现交易相关的功能。 """ from multiprocessing import Process, Queue import queue import threading from AlgoPlus.CTP.MdApi import run_tick_engine from AlgoPlus.CTP.FutureAccount import get_simulate_account # from AlgoPlus.CTP.FutureAccount import FutureAccount from AlgoPlus.CTP.TraderApiBase import TraderApiBase # from AlgoPlus.ta.time_bar import tick_to_bar import pandas as pd # from datetime import timedelta from datetime import datetime from datetime import time as s_time import operator import time import numpy as np import os import csv # import re # # jerome:增加tushare接口 # import tushare as ts # ts.set_token('78282dabb315ee578fb73a9b328f493026e97d5af709acb331b7b348') # pro = ts.pro_api() # 加入邮件通知 import smtplib from email.mime.text import MIMEText # 导入 MIMEText 类发送纯文本邮件 from email.mime.multipart import MIMEMultipart # 导入MIMEMultipart类发送带有附件的邮件 # from email.mime.application import MIMEApplication # 导入MIMEApplication类发送二进制附件 # 配置邮件信息 receivers = list["240884432@qq.com"] # 设置邮件接收人地址 subject = "模拟账户订单流策略交易信号" # 设置邮件主题 # text = " " # 设置邮件正文 # file_path = "test.txt" # 设置邮件附件文件路径 # 配置邮件服务器信息 smtp_server = "smtp.qq.com" # 设置发送邮件的 SMTP 服务器地址 smtp_port = 465 # 设置发送邮件的 SMTP 服务器端口号,一般为 25 端口 465 sender = "240884432@qq.com" # 设置发送邮件的邮箱地址 username = "240884432@qq.com" # 设置发送邮件的邮箱用户名 password = "osjyjmbqrzxtbjbf" # zrmpcgttataabhjh,设置发送邮件的邮箱密码或授权码 tickdatadict = {} # 存储Tick数据的字典 quotedict = {} # 存储行情数据的字典 ofdatadict = {} # 存储K线数据的字典 trade_dfs = {} # pd.DataFrame({})存储交易数据的DataFrame对象 previous_volume = {} # 上一个Tick的成交量 tsymbollist = {} # 过渡tick 截面数据_资金流向 = {} top_two_symbols = [] # Jerome:夜盘商品期货交易品种 commodity_night_dict = { "sc": s_time(2, 30), "bc": s_time(1, 0), "lu": s_time(23, 0), "nr": s_time(23, 0), "au": s_time(2, 30), "ag": s_time(2, 30), "ss": s_time(1, 0), "sn": s_time(1, 0), "ni": s_time(1, 0), "pb": s_time(1, 0), "zn": s_time(1, 0), "al": s_time(1, 0), "cu": s_time(1, 0), "ru": s_time(23, 0), "rb": s_time(23, 0), "hc": s_time(23, 0), "fu": s_time(23, 0), "bu": s_time(23, 0), "sp": s_time(23, 0), "PF": s_time(23, 0), "SR": s_time(23, 0), "CF": s_time(23, 0), "CY": s_time(23, 0), "RM": s_time(23, 0), "MA": s_time(23, 0), "TA": s_time(23, 0), "ZC": s_time(23, 0), "FG": s_time(23, 0), "OI": s_time(23, 0), "SA": s_time(23, 0), "p": s_time(23, 0), "j": s_time(23, 0), "jm": s_time(23, 0), "i": s_time(23, 0), "l": s_time(23, 0), "v": s_time(23, 0), "pp": s_time(23, 0), "eg": s_time(23, 0), "c": s_time(23, 0), "cs": s_time(23, 0), "y": s_time(23, 0), "m": s_time(23, 0), "a": s_time(23, 0), "b": s_time(23, 0), "rr": s_time(23, 0), "eb": s_time(23, 0), "pg": s_time(23, 0), "SH": s_time(23, 00), } fees_df = pd.read_csv( "./futures_fees_info.csv", header=0, usecols=[1, 4, 17, 19, 25], names=["合约代码", "合约乘数", "做多保证金率", "做空保证金率", "品种代码"], ) contacts_df = pd.read_csv( "./main_contacts.csv", header=0, usecols=[16, 17], names=["主连代码", "品种代码"] ) # 交易程序--------------------------------------------------------------------------------------------------------------------------------------------------------------------- class ParamObj: # 策略需要用到的参数,在新建合约对象的时候传入!! symbol = None # 合约名称 Lots = None # 下单手数 py = None # 设置委托价格的偏移,更加容易促成成交 trailing_stop_percent = None # 跟踪出场参数 fixed_stop_loss_percent = None # 固定出场参数 dj_X = None # 开仓的堆积参数 delta = None # 开仓的delta参数 sum_delta = None # 开仓的delta累积参数 失衡 = None 堆积 = None 周期 = None # 策略需要用到的变量 cont_df = 0 pos = 0 clearing_executed = False kgdata = True 多头止损价格 = 0 空头止损价格 = 0 多头成本价格 = 0 空头成本价格 = 0 多头开仓历时 = 0 空头开仓历时 = 0 平_多时间 = 4 平_空时间 = 4 def __init__( self, symbol, Lots, py, dj_X, delta, sum_delta, 失衡, 堆积, 周期, 平_多时间, 平_空时间, ): self.symbol = symbol self.Lots = Lots self.py = py self.dj_X = dj_X self.delta = delta self.sum_delta = sum_delta self.失衡 = 失衡 self.堆积 = 堆积 self.周期 = 周期 self.平_多时间 = 平_多时间 self.平_空时间 = 平_空时间 class MyTrader(TraderApiBase): def __init__( self, broker_id, td_server, investor_id, password, app_id, auth_code, md_queue=None, page_dir="", private_resume_type=2, public_resume_type=2, ): self.param_dict = {} self.queue_dict = {} self.品种 = " " def tickcome(self, md_queue): global previous_volume data = md_queue instrument_id = data["InstrumentID"].decode() # 品种代码 ActionDay = data["ActionDay"].decode() # 交易日日期 update_time = data["UpdateTime"].decode() # 更新时间 update_millisec = str(data["UpdateMillisec"]) # 更新毫秒数 created_at = ( ActionDay[:4] + "-" + ActionDay[4:6] + "-" + ActionDay[6:] + " " + update_time + "." + update_millisec ) # 创建时间 # 构建tick字典 tick = { "symbol": instrument_id, # 品种代码和交易所ID "created_at": datetime.strptime(created_at, "%Y-%m-%d %H:%M:%S.%f"), # 'created_at': created_at, # 创建时间 "price": float(data["LastPrice"]), # 最新价 "last_volume": ( int(data["Volume"]) - previous_volume.get(instrument_id, 0) if previous_volume.get(instrument_id, 0) != 0 else 0 ), # 瞬时成交量 "bid_p": float(data["BidPrice1"]), # 买价 "bid_v": int(data["BidVolume1"]), # 买量 "ask_p": float(data["AskPrice1"]), # 卖价 "ask_v": int(data["AskVolume1"]), # 卖量 "UpperLimitPrice": float(data["UpperLimitPrice"]), # 涨停价 "LowerLimitPrice": float(data["LowerLimitPrice"]), # 跌停价 "TradingDay": data["TradingDay"].decode(), # 交易日日期 "cum_volume": int(data["Volume"]), # 最新总成交量 "cum_amount": float(data["Turnover"]), # 最新总成交额 "cum_position": int(data["OpenInterest"]), # 合约持仓量 } # print('&&&&&&&&',instrument_id, tick['created_at'],'vol:',tick['last_volume']) # 更新上一个Tick的成交量 previous_volume[instrument_id] = int(data["Volume"]) if tick["last_volume"] > 0: # print(tick['created_at'],'vol:',tick['last_volume']) # 处理Tick数据 self.on_tick(tick) def can_time(self, hour, minute): hour = str(hour) minute = str(minute) if len(minute) == 1: minute = "0" + minute return int(hour + minute) def on_tick(self, tick): if tick["last_volume"] == 0: return quotes = tick timetick = str(tick["created_at"]).replace("+08:00", "") tsymbol = tick["symbol"] if tsymbol not in tsymbollist.keys(): # 获取tick的买卖价和买卖量 tsymbollist[tsymbol] = tick bid_p = quotes["bid_p"] ask_p = quotes["ask_p"] bid_v = quotes["bid_v"] ask_v = quotes["ask_v"] else: # 获取上一个tick的买卖价和买卖量 rquotes = tsymbollist[tsymbol] bid_p = rquotes["bid_p"] ask_p = rquotes["ask_p"] bid_v = rquotes["bid_v"] ask_v = rquotes["ask_v"] tsymbollist[tsymbol] = tick tick_dt = pd.DataFrame( { "datetime": timetick, "symbol": tick["symbol"], "mainsym": tick["symbol"].rstrip("0123456789").upper(), "lastprice": tick["price"], "vol": tick["last_volume"], "bid_p": bid_p, "ask_p": ask_p, "bid_v": bid_v, "ask_v": ask_v, }, index=[0], ) sym = tick_dt["symbol"][0] # print(tick_dt) self.tickdata(tick_dt, sym) # 公众号:松鼠Quant # 主页:www.quant789.com # 本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!! # 版权归松鼠Quant所有,禁止转发、转卖源码违者必究。 def data_of(self, symbol, df): global trade_dfs # 将df数据合并到trader_df中 # if symbol not in trade_dfs.keys(): # trade_df = pd.DataFrame({}) # else: # trade_df = trade_dfs[symbol] trade_dfs[symbol] = pd.concat([trade_dfs[symbol], df], ignore_index=True) # print('!!!!!!!!!!!trader_df: ', symbol, df['datetime'].iloc[-1]) # print(trader_df) def process(self, bidDict, askDict, symbol): try: # 尝试从quotedict中获取对应品种的报价数据 dic = quotedict[symbol] bidDictResult = dic["bidDictResult"] askDictResult = dic["askDictResult"] except Exception: bidDictResult, askDictResult = ( {}, {}, ) # 如果获取失败,则初始化bidDictResult和askDictResult为空字典 # 将所有买盘字典和卖盘字典的key合并,并按升序排序 sList = sorted(set(list(bidDict.keys()) + list(askDict.keys()))) # 遍历所有的key,将相同key的值进行累加 for s in sList: if s in bidDict: if s in bidDictResult: bidDictResult[s] = int(bidDict[s]) + bidDictResult[s] else: bidDictResult[s] = int(bidDict[s]) if s not in askDictResult: askDictResult[s] = 0 else: if s in askDictResult: askDictResult[s] = int(askDict[s]) + askDictResult[s] else: askDictResult[s] = int(askDict[s]) if s not in bidDictResult: bidDictResult[s] = 0 # 构建包含bidDictResult和askDictResult的字典,并存入quotedict中 df = {"bidDictResult": bidDictResult, "askDictResult": askDictResult} quotedict[symbol] = df return bidDictResult, askDictResult # 公众号:松鼠Quant # 主页:www.quant789.com # 本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!! # 版权归松鼠Quant所有,禁止转发、转卖源码违者必究。 def tickdata(self, df, symbol): tickdata = pd.DataFrame( { "datetime": df["datetime"], "symbol": df["symbol"], "lastprice": df["lastprice"], "volume": df["vol"], "bid_p": df["bid_p"], "bid_v": df["bid_v"], "ask_p": df["ask_p"], "ask_v": df["ask_v"], } ) try: if symbol in tickdatadict.keys(): rdf = tickdatadict[symbol] rdftm = pd.to_datetime(rdf["bartime"][0]).strftime("%Y-%m-%d %H:%M:%S") now = str(tickdata["datetime"][0]) if now > rdftm: try: oo = ofdatadict[symbol] self.data_of(symbol, oo) # print('oo',oo) if symbol in quotedict.keys(): quotedict.pop(symbol) if symbol in tickdatadict.keys(): tickdatadict.pop(symbol) if symbol in ofdatadict.keys(): ofdatadict.pop(symbol) except IOError as e: print("rdftm捕获到异常", e) tickdata["bartime"] = pd.to_datetime(tickdata["datetime"]) tickdata["open"] = tickdata["lastprice"] tickdata["high"] = tickdata["lastprice"] tickdata["low"] = tickdata["lastprice"] tickdata["close"] = tickdata["lastprice"] tickdata["starttime"] = tickdata["datetime"] else: tickdata["bartime"] = rdf["bartime"] tickdata["open"] = rdf["open"] tickdata["high"] = max( tickdata["lastprice"].values, rdf["high"].values ) tickdata["low"] = min( tickdata["lastprice"].values, rdf["low"].values ) tickdata["close"] = tickdata["lastprice"] tickdata["volume"] = df["vol"] + rdf["volume"].values tickdata["starttime"] = rdf["starttime"] else: print("新bar的第一个tick进入") tickdata["bartime"] = pd.to_datetime(tickdata["datetime"]) tickdata["open"] = tickdata["lastprice"] tickdata["high"] = tickdata["lastprice"] tickdata["low"] = tickdata["lastprice"] tickdata["close"] = tickdata["lastprice"] tickdata["starttime"] = tickdata["datetime"] except IOError as e: print("捕获到异常", e) tickdata["bartime"] = pd.to_datetime(tickdata["bartime"]) param = self.param_dict[self.品种] bardata = ( tickdata.resample( on="bartime", rule=param.周期, label="right", closed="right" ) .agg( { "starttime": "first", "symbol": "last", "open": "first", "high": "max", "low": "min", "close": "last", "volume": "sum", } ) .reset_index(drop=False) ) bardata = bardata.dropna().reset_index(drop=True) bardata["bartime"] = pd.to_datetime(bardata["bartime"][0]).strftime( "%Y-%m-%d %H:%M:%S" ) tickdatadict[symbol] = bardata tickdata["volume"] = df["vol"].values # print(bardata['symbol'].values,bardata['bartime'].values) self.orderflow_df_new(tickdata, bardata, symbol) # time.sleep(0.5) def orderflow_df_new(self, df_tick, df_min, symbol): voluememin = df_min["volume"].values highs = df_min["high"].values lows = df_min["low"].values opens = df_min["open"].values closes = df_min["close"].values # endArray = pd.to_datetime(df_min['bartime']).values endArray = df_min["bartime"].values bp1TickArray = df_tick["bid_p"].values ap1TickArray = df_tick["ask_p"].values lastTickArray = df_tick["lastprice"].values volumeTickArray = df_tick["volume"].values symbolarray = df_tick["symbol"].values for index, tEnd in enumerate(endArray): dt = endArray[index] bidDict = {} askDict = {} bar_vol = voluememin[index] bar_close = closes[index] bar_open = opens[index] bar_low = lows[index] bar_high = highs[index] bar_symbol = symbolarray[index] Bp = round(bp1TickArray[0], 4) Ap = round(ap1TickArray[0], 4) LastPrice = round(lastTickArray[0], 4) Volume = volumeTickArray[0] if LastPrice >= Ap: if str(LastPrice) in askDict.keys(): askDict[str(LastPrice)] += Volume else: askDict[str(LastPrice)] = Volume if LastPrice <= Bp: if str(LastPrice) in bidDict.keys(): bidDict[str(LastPrice)] += Volume else: bidDict[str(LastPrice)] = Volume # indexFinal = indexTick bidDictResult, askDictResult = self.process(bidDict, askDict, symbol) bidDictResult = dict( sorted(bidDictResult.items(), key=operator.itemgetter(0)) ) askDictResult = dict( sorted(askDictResult.items(), key=operator.itemgetter(0)) ) prinslist = list(bidDictResult.keys()) asklist = list(askDictResult.values()) bidlist = list(bidDictResult.values()) delta = sum(askDictResult.values()) - sum(bidDictResult.values()) # print(prinslist,asklist,bidlist) # print(len(prinslist),len(bidDictResult),len(askDictResult)) df = pd.DataFrame( { "price": pd.Series([prinslist]), "Ask": pd.Series([asklist]), "Bid": pd.Series([bidlist]), } ) # df=pd.DataFrame({'price':pd.Series(bidDictResult.keys()),'Ask':pd.Series(askDictResult.values()),'Bid':pd.Series(bidDictResult.values())}) df["symbol"] = bar_symbol df["datetime"] = dt df["delta"] = str(delta) df["close"] = bar_close df["open"] = bar_open df["high"] = bar_high df["low"] = bar_low df["volume"] = bar_vol # df['ticktime']=tTickArray[0] df["dj"] = self.GetOrderFlow_dj(df) ofdatadict[symbol] = df # 公众号:松鼠Quant # 主页:www.quant789.com # 本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!! # 版权归松鼠Quant所有,禁止转发、转卖源码违者必究。 def GetOrderFlow_dj(self, kData): param = self.param_dict[self.品种] Config = { "Value1": param.失衡, "Value2": param.堆积, "Value4": True, } aryData = kData djcout = 0 # 遍历kData中的每一行,计算djcout指标 for index, row in aryData.iterrows(): kItem = aryData.iloc[index] dtime = kItem["datetime"] price_s = kItem["price"] Ask_s = kItem["Ask"] Bid_s = kItem["Bid"] delta = kItem["delta"] price_s = price_s Ask_s = Ask_s Bid_s = Bid_s gj = 0 xq = 0 gxx = 0 xxx = 0 # 遍历price_s中的每一个元素,计算相关指标 for i in np.arange(0, len(price_s), 1): duiji = { "price": 0, "time": 0, "longshort": 0, } if i == 0: delta = delta order = { "Price": price_s[i], "Bid": {"Value": Bid_s[i]}, "Ask": {"Value": Ask_s[i]}, } # 空头堆积 if i >= 0 and i < len(price_s) - 1: if order["Bid"]["Value"] > Ask_s[i + 1] * int(Config["Value1"]): gxx += 1 gj += 1 if gj >= int(Config["Value2"]) and Config["Value4"] is True: duiji["price"] = price_s[i] duiji["time"] = dtime duiji["longshort"] = -1 if float(duiji["price"]) > 0: djcout += -1 else: gj = 0 # 多头堆积 if i >= 1 and i <= len(price_s) - 1: if order["Ask"]["Value"] > Bid_s[i - 1] * int(Config["Value1"]): xq += 1 xxx += 1 if xq >= int(Config["Value2"]) and Config["Value4"] is True: duiji["price"] = price_s[i] duiji["time"] = dtime duiji["longshort"] = 1 if float(duiji["price"]) > 0: djcout += 1 else: xq = 0 # 返回计算得到的djcout值 return djcout # def OnRtnTrade(self, pTrade): # print("||成交回报||", pTrade) # def OnRspOrderInsert(self, pInputOrder, pRspInfo, nRequestID, bIsLast): # print("||OnRspOrderInsert||", pInputOrder, pRspInfo, nRequestID, bIsLast) # 订单状态通知 # def OnRtnOrder(self, pOrder): # print("||订单回报||", pOrder) # 保存OF数据 def save_trade_data(self, df, instrument_id): # 定义文件路径 csv_file_path = f"ofdata/{instrument_id}_ofdata.csv" directory = os.path.dirname(csv_file_path) # 检查目录是否存在,如果不存在则创建它 if not os.path.exists(directory): os.makedirs(directory) # 如果文件夹存在,则追加数据;否则,创建新文件并保存整个 DataFrame if os.path.exists(csv_file_path): # 仅保存最后一行数据 df.tail(1).to_csv(csv_file_path, mode="a", header=False, index=False) else: # 创建新文件并保存整个 DataFrame df.to_csv(csv_file_path, index=False) def w_log(self, symbol, log_message): # 创建文件夹(如果不存在) log_dir = "tradelogs" if not os.path.exists(log_dir): os.makedirs(log_dir) # 写入日志到 CSV 文件 now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") log_file = os.path.join(log_dir, f"{symbol}log.csv") # 打印日志到控制台 print(f"{now}: {log_message}") with open(log_file, "a", encoding="utf-8", newline="") as csvfile: writer = csv.writer(csvfile) # 如果文件为空,写入表头 if csvfile.tell() == 0: writer.writerow(["time", "logs"]) writer.writerow([now, log_message]) # 计算单品种资金流向数据 def 资金流向计算(self, df): # 将 'delta' 和 'close' 转换为数值类型,强制转换错误 df["delta"] = pd.to_numeric(df["delta"], errors="coerce") df["close"] = pd.to_numeric(df["close"], errors="coerce") # 删除 'delta' 或 'close' 中的 NaN 值 df = df.dropna(subset=["delta", "close"]) symbol = df["symbol"].iloc[-1] # symbol = ''.join(filter(str.isalpha, symbol)).upper() # 资金净流向 = abs(sum(df['delta']*df['close']))*合约信息[symbol]['合约单位']*合约信息[symbol]['保证金'] hycs = int(fees_df[fees_df["合约代码"] == symbol]["合约乘数"].iloc[0]) bzj = ( float(fees_df[fees_df["合约代码"] == symbol]["做多保证金率"].iloc[0]) + float(fees_df[fees_df["合约代码"] == symbol]["做空保证金率"].iloc[0]) ) / 2 print("%s品种的合约乘数:%s,保证金率:%s" % (symbol, hycs, bzj)) 资金净流向 = abs(sum(df["delta"] * df["close"])) * hycs * bzj symbol = "".join(filter(str.isalpha, symbol)).upper() 更新状态 = True # 将结果放入 DataFrame result_df = pd.DataFrame({"资金净流向": [资金净流向], "更新状态": [更新状态]}) return result_df # 收盘清仓 def 收盘清仓(self, symbol, data): param = self.param_dict[symbol] # 获取当前时间 current_time = datetime.now().time() # 设置清仓操作的时间范围1:14:55到15:00 clearing_time1_start = s_time(14, 55) clearing_time1_end = s_time(15, 0) # 设置清仓操作的时间范围2:00:55到01:00 clearing_time2_start = s_time(22, 55) clearing_time2_end = s_time(23, 0) clearing_time3_start = s_time(0, 55) clearing_time3_end = s_time(1, 0) clearing_time4_start = s_time(2, 25) clearing_time4_end = s_time(2, 30) # jerome:增加修改合约代码识别 alpha_chars = "" numeric_chars = "" for char in symbol: if char.isalpha(): alpha_chars = char elif char.isdigit(): numeric_chars = char # 检查当前时间是否在第一个清仓操作的时间范围内,并且清仓操作未执行过 if ( clearing_time1_start <= current_time <= clearing_time1_end and not param.clearing_executed ): # trade_dfs.drop(trade_dfs.index,inplace=True)#清除当天的行情数据 if param.pos > 0: # 平多 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"3", ) param.pos = 0 self.w_log(symbol, f"{symbol}多头清仓操作") # 发送邮件: text = f"14:55平多清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) pass elif param.pos < 0: # 平空 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"3", ) param.pos = 0 self.w_log(symbol, f"{symbol}空头清仓操作") # 发送邮件: text = f"14:55平空清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) pass param.clearing_executed = True # 设置标志变量为已执行 # 检查当前时间是否在第二个清仓操作的时间范围内,并且清仓操作未执行过 elif ( clearing_time2_start <= current_time <= clearing_time2_end and not param.clearing_executed and commodity_night_dict[alpha_chars] == s_time(23, 00) ): # trade_dfs.drop(trade_dfs.index,inplace=True) #清除当天的行情数据 if param.pos > 0: # 平多 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"3", ) param.pos = 0 self.w_log(symbol, f"{symbol}多头清仓操作") # 发送邮件: text = f"22:55平多清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) pass elif param.pos < 0: # 平空 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"3", ) param.pos = 0 self.w_log(symbol, f"{symbol}空头清仓操作") # 发送邮件: text = f"22:55平空清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) pass # 检查当前时间是否在第三个清仓操作的时间范围内,并且清仓操作未执行过 elif ( clearing_time3_start <= current_time <= clearing_time3_end and not param.clearing_executed and commodity_night_dict[alpha_chars] == s_time(1, 00) ): # trade_dfs.drop(trade_dfs.index,inplace=True) #清除当天的行情数据 if param.pos > 0: # 平多 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"3", ) param.pos = 0 self.w_log(f"{symbol}多头清仓操作") # 发送邮件: text = f"00:55平多清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) pass elif param.pos < 0: # 平空 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"3", ) param.pos = 0 self.w_log(f"{symbol}空头清仓操作") # 发送邮件: text = f"00:55平空清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) pass elif ( clearing_time4_start <= current_time <= clearing_time4_end and not param.clearing_executed and commodity_night_dict[alpha_chars] == s_time(2, 30) ): # trade_dfs.drop(trade_dfs.index,inplace=True) #清除当天的行情数据 if param.pos > 0: # 平多 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"3", ) param.pos = 0 self.w_log(f"{symbol}多头清仓操作") # 发送邮件: text = f"2:25平多清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) pass elif param.pos < 0: # 平空 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"3", ) param.pos = 0 self.w_log(f"{symbol}空头清仓操作") # 发送邮件: text = f"2:25平空清仓交易: 交易品种为{data['InstrumentID']}, 反手平空的平仓价格为{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) pass param.clearing_executed = True # 设置标志变量为已执行 # 如果不在任何清仓操作的时间范围内,可以执行其他操作或不执行任何操作 else: param.clearing_executed = False pass # print("不在清仓操作时间范围内") return param.clearing_executed def cal_sig(self, symbol_queue): while True: try: data = symbol_queue.get( block=True, timeout=5 ) # 如果5秒没收到新的tick行情,则抛出异常 instrument_id = data["InstrumentID"].decode() # 品种代码 size = symbol_queue.qsize() if size > 1: print( f"当前{instrument_id}共享队列长度为{size}, 有点阻塞!!!!!" ) param = self.param_dict[instrument_id] self.品种 = instrument_id # OF计算数据开始 self.tickcome(data) trade_df = trade_dfs[instrument_id] # 清仓开关 run_kg = self.收盘清仓(instrument_id, data) 最新价 = data["LastPrice"] # #多头时间出场 if param.pos > 0 and param.多头开仓历时 > param.平_多时间: # 平多 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"3", ) param.pos = 0 param.多头止损价格 = 0 param.多头开仓历时 = 0 param.多头成本价格 = 0 self.w_log( instrument_id, f"历时{param.平_多时间}***多头***{self.品种}时间出场", ) # 发送邮件 text = f"平多时间交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平多的平仓价格{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) # 多头价格止损 if param.pos > 0 and 最新价 < param.多头止损价格: # 平多 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"3", ) param.pos = 0 param.多头止损价格 = 0 param.多头开仓历时 = 0 param.多头成本价格 = 0 self.w_log( instrument_id, f"多头止损触发: {最新价},多头止损价格:{param.多头止损价格} ***{instrument_id}多头止损***", ) # 发送邮件 text = f"平多止损交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平多的平仓价格{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) # #多头跟踪止盈-----------------------暂时用不到------------------------ # elif param.pos>0 and len(trade_df)>1 and 最新价param.多头成本价格 : # #平多 # self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1') # self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3') # param.pos=0 # param.多头止损价格=0 # param.多头开仓历时=0 # param.多头成本价格=0 # self.w_log(instrument_id,f'多头跟踪止盈触发: {最新价} ***{instrument_id}多头止盈***') # # #空头时间出场 if param.pos < 0 and param.空头开仓历时 > param.平_空时间: # 平空 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"3", ) param.pos = 0 param.空头止损价格 = 0 param.空头开仓历时 = 0 param.空头成本价格 = 0 self.w_log( instrument_id, f"历时{param.平_空时间}***空头***{self.品种}时间出场", ) # 发送邮件 text = f"平空时间交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平空的平仓价格为{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) # 空头价格止损 if param.pos < 0 and 最新价 > param.空头止损价格: # 平空 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"3", ) param.pos = 0 param.空头止损价格 = 0 param.空头开仓历时 = 0 param.空头成本价格 = 0 self.w_log( instrument_id, f"空头止损触发: {最新价},空头止损价格:{param.空头止损价格} ***{instrument_id}空头止损***", ) # 发送邮件 text = f"平空止损交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平空的平仓价格为{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) # #空头跟踪止盈-----------------------暂时用不到------------------------ # elif param.pos<0 and len(trade_df)>1 and 最新价>trade_df['10_MA'].iloc[-1] and 最新价 param.cont_df and run_kg is False: # 开仓历时更新: if param.pos > 0: param.多头开仓历时 += 1 elif param.pos < 0: param.空头开仓历时 += 1 # 计算截面数据 截面数据_资金流向[instrument_id] = self.资金流向计算(trade_df) # 日均线 trade_df["dayma"] = trade_df["close"].mean() # 计算5日均线和10日均线,即使数据不足5日或10日 trade_df["5_MA"] = ( trade_df["close"].rolling(window=5, min_periods=1).mean() ) trade_df["10_MA"] = ( trade_df["close"].rolling(window=10, min_periods=1).mean() ) # 计算累积的delta值 trade_df["delta"] = trade_df["delta"].astype(float) trade_df["delta累计"] = trade_df["delta"].cumsum() # 大于日均线 开多1 = ( trade_df["dayma"].iloc[-1] > 0 and trade_df["close"].iloc[-1] > trade_df["dayma"].iloc[-1] ) # 累计多空净量大于X 开多4 = ( trade_df["delta累计"].iloc[-1] > param.sum_delta and trade_df["delta"].iloc[-1] > param.delta ) # 小于日均线 开空1 = ( trade_df["dayma"].iloc[-1] > 0 and trade_df["close"].iloc[-1] < trade_df["dayma"].iloc[-1] ) # 累计多空净量小于X 开空4 = ( trade_df["delta累计"].iloc[-1] < -param.sum_delta and trade_df["delta"].iloc[-1] < -param.delta ) 开多组合 = ( 开多1 and 开多4 and trade_df["dj"].iloc[-1] > param.dj_X and trade_df["5_MA"].iloc[-1] > trade_df["10_MA"].iloc[-1] ) 开空条件 = ( 开空1 and 开空4 and trade_df["dj"].iloc[-1] < -param.dj_X and trade_df["5_MA"].iloc[-1] < trade_df["10_MA"].iloc[-1] ) # 开平仓 # 换仓平多 if param.pos > 0 and instrument_id not in top_two_symbols: self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"3", ) param.pos = 0 param.多头止损价格 = 0 param.多头开仓历时 = 0 param.多头成本价格 = 0 self.w_log( instrument_id, f"当前截面品种{top_two_symbols},{instrument_id}不在范围,***多平仓***", ) # 发送邮件 text = f"换仓平多交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平多的平仓价格{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) # 多头开仓 if param.pos == 0 and 开多组合 and instrument_id in top_two_symbols: # 开多 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"0", ) param.pos = 1 param.多头止损价格 = trade_df["low"].iloc[-2] param.多头成本价格 = data["AskPrice1"] param.多头开仓历时 = 1 self.w_log( instrument_id, f"品种:{instrument_id},委托价格: {param.多头成本价格}***开多***", ) # 发送邮件 text = f"多头开仓交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 多头开仓的开仓价格{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) # 换仓平空 if param.pos < 0 and instrument_id not in top_two_symbols: self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"1", ) self.insert_order( data["ExchangeID"], data["InstrumentID"], data["AskPrice1"] + param.py, param.Lots, b"0", b"3", ) param.pos = 0 param.空头止损价格 = 0 param.空头开仓历时 = 0 param.空头成本价格 = 0 self.w_log( instrument_id, f"当前截面品种{top_two_symbols},{instrument_id}不在范围,***空平仓***", ) # 发送邮件 text = f"换仓平空交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 反手平空的平仓价格为{data['AskPrice1']+param.py}, 交易手数位{param.Lots}" send_mail(text) # 空头开仓 if param.pos == 0 and 开空条件 and instrument_id in top_two_symbols: # 开空 self.insert_order( data["ExchangeID"], data["InstrumentID"], data["BidPrice1"] - param.py, param.Lots, b"1", b"0", ) param.pos = -1 param.空头止损价格 = trade_df["high"].iloc[-2] param.空头成本价格 = data["BidPrice1"] param.空头开仓历时 = 1 self.w_log( instrument_id, f"品种:{instrument_id},委托价格: {param.空头成本价格}***开空***", ) # 发送邮件 text = f"空头开仓交易: 交易品种为{data['InstrumentID']}, 交易时间为{trade_df['datetime'].iloc[-1]}, 空头开仓的开仓价格{data['BidPrice1']-param.py}, 交易手数位{param.Lots}" send_mail(text) # print(trade_df) # 保存OF数据 self.save_trade_data(trade_df, instrument_id) # 保存bar计数 param.cont_df = len(trade_df) except queue.Empty: # print(f"当前合约队列为空,等待新数据插入。") pass # 将CTP推送的行情数据分发给对应线程队列去执行 def distribute_tick(self): while True: if self.status == 0: data = None while not self.md_queue.empty(): data = self.md_queue.get(block=False) instrument_id = data["InstrumentID"].decode() # 品种代码 try: self.queue_dict[instrument_id].put( data, block=False ) # 往对应合约队列中插入行情 # print(f"{instrument_id}合约数据插入。") except queue.Full: # 当某个线程阻塞导致对应队列容量超限时抛出异常,不会影响其他合约的信号计算 print( f"{instrument_id}合约信号计算阻塞导致对应队列已满,请检查对应代码逻辑后重启。" ) else: time.sleep(1) def start(self, param_dict): threads = [] self.param_dict = param_dict thread1 = threading.Thread(target=横截面计算) for symbol in param_dict.keys(): trade_dfs[symbol] = pd.DataFrame({}) self.queue_dict[symbol] = queue.Queue( 10 ) # 为每个合约创建一个限制数为10的队列,当计算发生阻塞导致队列达到限制数时会抛出异常 t = threading.Thread( target=self.cal_sig, args=(self.queue_dict[symbol],) ) # 为每个合约单独创建一个线程计算开仓逻辑 threads.append(t) t.start() thread1.start() self.distribute_tick() for t in threads: t.join() thread1.join() # 定义横截面计算函数 def 横截面计算(): global top_two_symbols while True: if len(截面数据_资金流向) > 2: goss = 1 # 检查是否有任何品种的更新状态为 False,如果有则直接返回 for symbol, data in 截面数据_资金流向.items(): if not data["更新状态"].iloc[-1]: # print(f"品种 {symbol} 的更新状态为 False,跳过计算。") goss = 0 break if goss == 1: # 继续计算资金净流向 sorted_items = sorted( 截面数据_资金流向.items(), key=lambda item: item[1]["资金净流向"].iloc[-1], reverse=True, ) max_symbol = sorted_items[0][0] second_max_symbol = sorted_items[1][0] SAN_max_symbol = sorted_items[2][0] top_two_symbols = [max_symbol, second_max_symbol, SAN_max_symbol] print(f"最大值和第二大值对应的键: {top_two_symbols}") print(f"截面数据_资金流向: {截面数据_资金流向}") # 将所有品种的更新状态设置为 False for symbol in 截面数据_资金流向: 截面数据_资金流向[symbol]["更新状态"] = False time.sleep(1) def get_main_contact_on_time(main_symbol_code, contacts_df): main_symbol = contacts_df[contacts_df["品种代码"] == main_symbol_code][ "主连代码" ].iloc[0] print("最终使用的主连代码:", main_symbol) return main_symbol def send_mail(text): msg = MIMEMultipart() msg["From"] = sender msg["To"] = ";".join(receivers) msg["Subject"] = subject msg.attach(MIMEText(text, "plain", "utf-8")) smtp = smtplib.SMTP_SSL(smtp_server, smtp_port) smtp.login(username, password) smtp.sendmail(sender, receivers, msg.as_string()) smtp.quit() def run_trader( param_dict, broker_id, td_server, investor_id, password, app_id, auth_code, md_queue=None, page_dir="", private_resume_type=2, public_resume_type=2, ): my_trader = MyTrader( broker_id, td_server, investor_id, password, app_id, auth_code, md_queue, page_dir, private_resume_type, public_resume_type, ) my_trader.start(param_dict) if __name__ == "__main__": # global symbol # 公众号:松鼠Quant # 主页:www.quant789.com # 本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!! # 版权归松鼠Quant所有,禁止转发、转卖源码违者必究。 sb_1 = get_main_contact_on_time("IH", contacts_df) sb_2 = get_main_contact_on_time("ag", contacts_df) sb_3 = get_main_contact_on_time("eb", contacts_df) sb_4 = get_main_contact_on_time("si", contacts_df) sb_5 = get_main_contact_on_time("sc", contacts_df) sb_6 = get_main_contact_on_time("SA", contacts_df) sb_7 = get_main_contact_on_time("rb", contacts_df) sb_8 = get_main_contact_on_time("ru", contacts_df) sb_9 = get_main_contact_on_time("ni", contacts_df) sb_10 = get_main_contact_on_time("m", contacts_df) # 注意:运行前请先安装好algoplus, # pip install AlgoPlus # http://www.algo.plus/ctp/python/0103001.html # 实盘参数字典,需要实盘交易的合约,新建对应的参数对象即可,以下参数仅供测试使用,不作为实盘参考!!!! 历时平仓 = 4 param_dict = {} param_dict[sb_1] = ParamObj( symbol=sb_1, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_2] = ParamObj( symbol=sb_2, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_3] = ParamObj( symbol=sb_3, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_4] = ParamObj( symbol=sb_4, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_5] = ParamObj( symbol=sb_5, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_6] = ParamObj( symbol=sb_6, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_7] = ParamObj( symbol=sb_7, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_8] = ParamObj( symbol=sb_8, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_9] = ParamObj( symbol=sb_9, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) param_dict[sb_10] = ParamObj( symbol=sb_10, Lots=1, py=6, dj_X=0, delta=500, sum_delta=2000, 失衡=3, 堆积=3, 周期="1T", 平_多时间=历时平仓, 平_空时间=历时平仓, ) # 用simnow模拟,不要忘记屏蔽下方实盘的future_account字典 future_account = get_simulate_account( investor_id="227508", # simnow账户,注意是登录账户的ID,SIMNOW个人首页查看 password="Zj1234!@#%", # simnow密码 server_name="电信1", # 电信1、电信2、移动、TEST、N视界 subscribe_list=list(param_dict.keys()), # 合约列表 ) # #实盘用这个,不要忘记屏蔽上方simnow的future_account字典 # future_account = FutureAccount( # broker_id='', # 期货公司BrokerID # server_dict={'TDServer': "ip:port", 'MDServer': 'ip:port'}, # TDServer为交易服务器,MDServer为行情服务器。服务器地址格式为"ip:port。" # reserve_server_dict={}, # 备用服务器地址 # investor_id='', # 账户 # password='', # 密码 # app_id='simnow_client_test', # 认证使用AppID # auth_code='0000000000000000', # 认证使用授权码 # subscribe_list=list(param_dict.keys()), # 订阅合约列表 # md_flow_path='./log', # MdApi流文件存储地址,默认MD_LOCATION # td_flow_path='./log', # TraderApi流文件存储地址,默认TD_LOCATION # ) print("开始", len(future_account.subscribe_list)) # 共享队列 share_queue = Queue(maxsize=200) # 行情进程 md_process = Process(target=run_tick_engine, args=(future_account, [share_queue])) # 交易进程 trader_process = Process( target=run_trader, args=( param_dict, future_account.broker_id, future_account.server_dict["TDServer"], future_account.investor_id, future_account.password, future_account.app_id, future_account.auth_code, share_queue, # 队列 future_account.td_flow_path, ), ) md_process.start() trader_process.start() md_process.join() trader_process.join()