import subprocess import schedule import time from datetime import datetime # jerome:增加akshare库 import akshare as ak # jerome:增加下列库用于爬虫获取主力连续代码 import pandas as pd import requests from bs4 import BeautifulSoup import csv import re import os # 获取当前工作目录 current_directory = os.getcwd() print("当前工作目录:", current_directory) # 设置新的工作目录 new_directory = "C:/simnow_trader" os.chdir(new_directory) # 验证新的工作目录 updated_directory = os.getcwd() print("已更改为新的工作目录:", updated_directory) # 定义要启动的文件 files_to_run = ['dingdanliu_nb.py'] def run_scripts(): print("启动程序...") for file in files_to_run: time.sleep(1) # 使用subprocess模块运行命令 subprocess.Popen(['start', 'cmd', '/k', 'python', file], shell=True) print(file) print(datetime.now(),'程序重新启动完成,等待明天关闭重启') def close_scripts(): print("关闭程序...") # 通过创建一个包含关闭指定窗口命令的批处理文件来关闭CMD窗口 def close_specific_cmd_window(cmd_window_title): with open("close_cmd_window.bat", "w") as batch_file: batch_file.write(f'@echo off\nfor /f "tokens=2 delims=," %%a in (\'tasklist /v /fo csv ^| findstr /i "{cmd_window_title}"\') do taskkill /pid %%~a') # 运行批处理文件 subprocess.run("close_cmd_window.bat", shell=True) # 循环关闭所有脚本对应的CMD窗口 for title in files_to_run: close_specific_cmd_window(title) print(datetime.now(),'已关闭程序,等待重新运行程序') # jerome:增加使用akshare获取期货的手续费等数据,并保存到对应目录下 def get_futures_fees_info(): futures_fees_info_df = ak.futures_fees_info() futures_fees_info_df[['品种代码', '交割月份']] = futures_fees_info_df['合约'].apply(lambda x: pd.Series(split_alpha_numeric(x))) futures_fees_info_df.to_csv(r'./futures_fees_info.csv', index=False) print("期货费率表已经保存为futures_fees_info.csv") def get_main_contacts(): url = "https://www.9qihuo.com/hangqing" # 发送GET请求,禁用SSL验证 response = requests.get(url, verify=False) response.encoding = 'utf-8' # 确保编码正确 # 解析网页内容 soup = BeautifulSoup(response.text, 'lxml') # 找到目标表格 table = soup.find('table', {'id': 'tblhangqinglist'}) # 初始化CSV文件 with open('tmp_main_contacts.csv', mode='w', newline='', encoding='utf-8') as file: writer = csv.writer(file) # 遍历表格的所有行 for row in table.find_all('tr'): # 获取每一行的所有单元格 cols = row.find_all(['th', 'td']) # 提取文本内容并写入CSV文件 writer.writerow([col.text.strip() for col in cols]) df = pd.read_csv('./tmp_main_contacts.csv',encoding='utf-8') df['交易品种'] = df['合约'].str.split(r'[()]', n=1, expand=True)[0] df['主连代码'] = df['合约'].str.split(r'[()]', n=2, expand=True)[1] df[['品种代码', '交割月份']] = df['主连代码'].apply(lambda x: pd.Series(split_alpha_numeric(x))) df.to_csv('./main_contacts.csv') print("期货主力品种表已经保存为main_contacts.csv") os.remove("./tmp_main_contacts.csv") # 拆分字母和数字的函数 def split_alpha_numeric(s): match = re.match(r"([a-zA-Z]+)([0-9]+)", s) if match: return match.groups() else: return (s, None) # 如果没有匹配,返回原始字符串和None # 设置定时任务,关闭程序 schedule.every().day.at("15:30").do(close_scripts) schedule.every().day.at("03:00").do(close_scripts) # 设置定时任务,启动程序 schedule.every().day.at("08:57").do(run_scripts) schedule.every().day.at("20:55").do(run_scripts) # # # 设置定时任务,生成futures_fees_info和main_contacts schedule.every().day.at("20:50").do(get_futures_fees_info) schedule.every().day.at("20:50").do(get_main_contacts) # 保持脚本运行,等待定时任务触发 while True: schedule.run_pending() time.sleep(1)