import tensorflow as tf import numpy as np class Model: def __init__(self, learning_rate, num_layers, size, size_layer, output_size, forget_bias = 0.1): def lstm_cell(size_layer): return tf.nn.rnn_cell.LSTMCell(size_layer, state_is_tuple = False) rnn_cells = tf.nn.rnn_cell.MultiRNNCell([lstm_cell(size_layer) for _ in range(num_layers)], state_is_tuple = False) self.X = tf.placeholder(tf.float32, (None, None, size)) self.Y = tf.placeholder(tf.float32, (None, output_size)) drop = tf.contrib.rnn.DropoutWrapper(rnn_cells, output_keep_prob = forget_bias) self.hidden_layer = tf.placeholder(tf.float32, (None, num_layers * 2 * size_layer)) self.outputs, self.last_state = tf.nn.dynamic_rnn(drop, self.X, initial_state = self.hidden_layer, dtype = tf.float32) rnn_W = tf.Variable(tf.random_normal((size_layer, output_size))) rnn_B = tf.Variable(tf.random_normal([output_size])) self.logits = tf.matmul(self.outputs[-1], rnn_W) + rnn_B self.cost = tf.reduce_mean(tf.square(self.Y - self.logits)) self.optimizer = tf.train.AdamOptimizer(learning_rate).minimize(self.cost)