增加交易策略、交易指标、量化库代码等文件夹
This commit is contained in:
220
999.账户相关/simnow_trader/traderdata/temp/app_temp.py
Normal file
220
999.账户相关/simnow_trader/traderdata/temp/app_temp.py
Normal file
@@ -0,0 +1,220 @@
|
||||
from flask import Flask, render_template, jsonify
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
import ast
|
||||
import time
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
# 加入邮件通知
|
||||
import smtplib
|
||||
from email.mime.text import MIMEText # 导入 MIMEText 类发送纯文本邮件
|
||||
from email.mime.multipart import (
|
||||
MIMEMultipart,
|
||||
)
|
||||
|
||||
import akshare as ak
|
||||
|
||||
|
||||
|
||||
# from email.mime.application import MIMEApplication
|
||||
|
||||
# 配置邮件信息
|
||||
receivers = ["240884432@qq.com"] # 设置邮件接收人地址
|
||||
subject = "TD_Simnow_Signal" # 设置邮件主题 订单流策略交易信号
|
||||
|
||||
# 配置邮件服务器信息
|
||||
smtp_server = "smtp.qq.com" # 设置发送邮件的 SMTP 服务器地址
|
||||
smtp_port = 465 # 设置发送邮件的 SMTP 服务器端口号,一般为 25 端口 465
|
||||
sender = "240884432@qq.com" # 设置发送邮件的邮箱地址
|
||||
username = "240884432@qq.com" # 设置发送邮件的邮箱用户名
|
||||
password = "osjyjmbqrzxtbjbf" # zrmpcgttataabhjh,设置发送邮件的邮箱密码或授权码
|
||||
|
||||
last_sent_time = 0
|
||||
time_period = 48
|
||||
|
||||
# current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
# os.chdir(current_dir)
|
||||
# print("已更改为新的工作目录:", current_dir)
|
||||
|
||||
# 获取当前工作目录
|
||||
current_directory = os.getcwd()
|
||||
print("当前工作目录:", current_directory)
|
||||
# 设置新的工作目录
|
||||
new_directory = "C:/simnow_trader/traderdata"
|
||||
os.chdir(new_directory)
|
||||
# 验证新的工作目录
|
||||
updated_directory = os.getcwd()
|
||||
print("已更改为新的工作目录:", updated_directory)
|
||||
|
||||
# 获取当前文件夹中所有包含"ofdata"字符的CSV文件
|
||||
def get_csv_files():
|
||||
files = {}
|
||||
for filename in os.listdir():
|
||||
if "ofdata" in filename and filename.endswith(".csv"):
|
||||
files[filename] = os.path.join(os.getcwd(), filename)
|
||||
return files
|
||||
|
||||
def send_mail(text):
|
||||
global last_sent_time
|
||||
|
||||
# 检查时间间隔
|
||||
current_time = time.time()
|
||||
if current_time - last_sent_time < 60:
|
||||
print("current_time:",current_time)
|
||||
print("last_sent_time:",last_sent_time)
|
||||
print("一分钟内已发送过邮件,本次跳过")
|
||||
return # 直接退出,不执行发送
|
||||
msg = MIMEMultipart()
|
||||
msg["From"] = sender
|
||||
msg["To"] = ";".join(receivers)
|
||||
msg["Subject"] = subject
|
||||
html_content = f"""
|
||||
<html>
|
||||
<body>
|
||||
<p>以下是数据的最后一列:</p>
|
||||
{text}
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
msg.attach(MIMEText(html_content, 'html'))
|
||||
smtp = smtplib.SMTP_SSL(smtp_server, smtp_port)
|
||||
smtp.login(username, password)
|
||||
smtp.sendmail(sender, receivers, msg.as_string())
|
||||
smtp.quit()
|
||||
|
||||
# 根据文件路径加载数据,只读取前12列
|
||||
def load_data(file_path):
|
||||
df = pd.read_csv(file_path, usecols=range(12)) # 只读取前12列
|
||||
df = df.drop_duplicates()
|
||||
df["delta"] = df["delta"].astype(float)
|
||||
df['datetime'] = pd.to_datetime(df['datetime'],format='mixed')#, dayfirst=True, format='mixed'
|
||||
|
||||
# 增加'delta累计'列
|
||||
df['delta累计'] = df.groupby(df['datetime'].dt.date)['delta'].cumsum()
|
||||
|
||||
# # 使用akshare获取5分钟k线的全部数据
|
||||
# df = ak.futures_zh_minute_sina(symbol=df["symbol"].iloc[-1], period="5")
|
||||
# df['datetime'] = pd.to_datetime(df['datetime'],format='mixed')
|
||||
# df['终极平滑值'],df['趋势方向'] = ultimate_smoother(df["close"],time_period)
|
||||
df['终极平滑值'],df['趋势方向'] = ultimate_smoother(df['close'],time_period)
|
||||
# # 设置索引
|
||||
# df = df.set_index('datetime')
|
||||
# df = df.set_index('datetime')
|
||||
|
||||
# # 使用 join 进行对齐
|
||||
# df = df.join(df[['price', 'Ask', 'Bid', 'delta','dj','delta累计']], how='left')
|
||||
|
||||
# # 重置索引(可选)
|
||||
# df = df.reset_index()
|
||||
df['datetime'] = df['datetime'].dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
# 增加'POC'列
|
||||
df['POC'] = add_poc_column(df)
|
||||
# df['symbol'] = df["symbol"].iloc[-1]
|
||||
# cols = ['price', 'Ask', 'Bid', 'symbol','datetime','delta','close', 'open', 'high', 'low', 'volume','hold','dj','delta累计','POC', '终极平滑值', '趋势方向']
|
||||
# df = df[cols]
|
||||
# del df,df
|
||||
|
||||
if len(df) >=5*time_period and (df['趋势方向'].iloc[-1] != df['趋势方向'].iloc[-2]):
|
||||
table_text = df.iloc[:,3:].tail(1).to_html(index=False) #price,Ask,Bid,symbol,datetime,delta,close,open,high,low,volume,dj
|
||||
send_mail(table_text)
|
||||
else:
|
||||
pass
|
||||
return df.iloc[-11:-1].to_dict(orient="records")
|
||||
|
||||
def safe_literal_eval(x):
|
||||
"""带异常处理的安全转换"""
|
||||
try:
|
||||
return ast.literal_eval(x)
|
||||
except:
|
||||
return [] # 返回空列表作为占位符
|
||||
|
||||
def add_poc_column(df):
|
||||
# 安全转换列数据
|
||||
df['price'] = df['price'].apply(safe_literal_eval)
|
||||
df['Ask'] = df['Ask'].apply(lambda x: list(map(int, safe_literal_eval(x))))
|
||||
df['Bid'] = df['Bid'].apply(lambda x: list(map(int, safe_literal_eval(x))))
|
||||
|
||||
# 定义处理函数(带数据验证)
|
||||
def find_poc(row):
|
||||
# 验证三个列表长度一致且非空
|
||||
if not (len(row['price']) == len(row['Ask']) == len(row['Bid']) > 0):
|
||||
return None # 返回空值标记异常数据
|
||||
|
||||
sums = [a + b for a, b in zip(row['Ask'], row['Bid'])]
|
||||
try:
|
||||
max_index = sums.index(max(sums))
|
||||
return row['price'][max_index]
|
||||
except ValueError:
|
||||
return None # 处理空求和列表情况
|
||||
|
||||
# 应用处理函数
|
||||
df['POC'] = df.apply(find_poc, axis=1)
|
||||
|
||||
# 可选:统计异常数据
|
||||
error_count = df['POC'].isnull().sum()
|
||||
if error_count > 0:
|
||||
print(f"警告:发现 {error_count} 行异常数据(已标记为NaN)")
|
||||
|
||||
return df['POC']
|
||||
|
||||
|
||||
def ultimate_smoother(price, period):
|
||||
# 初始化变量(修正角度单位为弧度)
|
||||
a1 = np.exp(-1.414 * np.pi / period)
|
||||
b1 = 2 * a1 * np.cos(1.414 * np.pi / period) # 将180改为np.pi
|
||||
c2 = b1
|
||||
c3 = -a1 ** 2
|
||||
c1 = (1 + c2 - c3) / 4
|
||||
|
||||
# 准备输出序列
|
||||
us = np.zeros(len(price))
|
||||
us_new = np.zeros(len(price))
|
||||
trend = [None]*(len(price))
|
||||
ma_close = np.zeros(len(price))
|
||||
|
||||
# 前4个点用原始价格初始化
|
||||
for i in range(len(price)):
|
||||
if i < 4:
|
||||
us[i] = price[i]
|
||||
else:
|
||||
# 应用递归公式
|
||||
us[i] = (1 - c1) * price[i] + (2 * c1 - c2) * price[i-1] \
|
||||
- (c1 + c3) * price[i-2] + c2 * us[i-1] + c3 * us[i-2]
|
||||
|
||||
us_new = np.around(us, decimals=2)
|
||||
ma_close = price.rolling(window=5*period).mean()
|
||||
|
||||
if us_new[i]>price[i] and ma_close[i]>price[i]:
|
||||
trend[i] = '空头趋势'
|
||||
elif us_new[i]<price[i] and ma_close[i]<price[i]:
|
||||
trend[i] = '多头趋势'
|
||||
else:
|
||||
trend[i] = '无趋势'
|
||||
|
||||
|
||||
return us_new,trend
|
||||
|
||||
|
||||
@app.route("/")
|
||||
def index():
|
||||
files = get_csv_files() # 获取所有符合条件的文件
|
||||
# 默认显示第一个文件的数据
|
||||
first_file = list(files.keys())[0] if files else None
|
||||
data = load_data(files[first_file]) if first_file else []
|
||||
return render_template("index.html", data=data, files=files, file_name=first_file)
|
||||
|
||||
|
||||
@app.route("/data/<file_name>")
|
||||
def switch_data(file_name):
|
||||
files = get_csv_files() # 获取所有符合条件的文件
|
||||
if file_name in files:
|
||||
data = load_data(files[file_name])
|
||||
return jsonify(data)
|
||||
return jsonify({"error": "File not found"}), 404
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run(host='0.0.0.0', port=5000, debug=True) # 监听所有网络接口
|
||||
Reference in New Issue
Block a user