增加交易策略、交易指标、量化库代码等文件夹

This commit is contained in:
Win_home
2025-04-27 15:54:09 +08:00
parent ca3b209096
commit f57150dae8
589 changed files with 854346 additions and 1757 deletions

View File

@@ -0,0 +1,983 @@
'''
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
该代码的主要目的是处理Tick数据并生成交易信号。代码中定义了一个tickcome函数它接收到Tick数据后会进行一系列的处理包括构建Tick字典、更新上一个Tick的成交量、保存Tick数据、生成K线数据等。其中涉及到的一些函数有
on_tick(tick): 处理单个Tick数据根据Tick数据生成K线数据。
tickdata(df, symbol): 处理Tick数据生成K线数据。
orderflow_df_new(df_tick, df_min, symbol): 处理Tick和K线数据生成订单流数据。
GetOrderFlow_dj(kData): 计算订单流的信号指标。
除此之外代码中还定义了一个MyTrader类继承自TraderApiBase用于实现交易相关的功能。
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
'''
from concurrent.futures import ThreadPoolExecutor
from multiprocessing import Process, Queue
import queue
import threading
from AlgoPlus.CTP.MdApi import run_tick_engine
from AlgoPlus.CTP.FutureAccount import get_simulate_account
from AlgoPlus.CTP.FutureAccount import FutureAccount
from AlgoPlus.CTP.TraderApiBase import TraderApiBase
from AlgoPlus.ta.time_bar import tick_to_bar
import pandas as pd
from datetime import datetime, timedelta
from datetime import time as s_time
import operator
import time
import numpy as np
import os
import csv
import re
tickdatadict = {} # 存储Tick数据的字典
quotedict = {} # 存储行情数据的字典
ofdatadict = {} # 存储K线数据的字典
trade_dfs = {} #pd.DataFrame({}) # 存储交易数据的DataFrame对象
previous_volume = {} # 上一个Tick的成交量
tsymbollist={} #过渡tick
截面数据_资金流向={}
top_two_symbols=[]
合约信息={
"A": {"合约单位": 10, "保证金": 0.12},
"AG": {"合约单位": 15, "保证金": 0.12},
"AL": {"合约单位": 5, "保证金": 0.12},
"AO": {"合约单位": 20, "保证金": 0.09},
"AP": {"合约单位": 10, "保证金": 0.1},
"AU": {"合约单位": 1000, "保证金": 0.1},
"B": {"合约单位": 10, "保证金": 0.09},
"BC": {"合约单位": 5, "保证金": 0.12},
"BR": {"合约单位": 5, "保证金": 0.12},
"BU": {"合约单位": 10, "保证金": 0.15},
"C": {"合约单位": 10, "保证金": 0.12},
"CF": {"合约单位": 5, "保证金": 0.07},
"CJ": {"合约单位": 5, "保证金": 0.12},
"CS": {"合约单位": 10, "保证金": 0.09},
"CU": {"合约单位": 5, "保证金": 0.12},
"CY": {"合约单位": 5, "保证金": 0.07},
"EB": {"合约单位": 5, "保证金": 0.12},
"EC": {"合约单位": 50, "保证金": 0.12},
"EG": {"合约单位": 10, "保证金": 0.12},
"FB": {"合约单位": 10, "保证金": 0.1},
"FG": {"合约单位": 20, "保证金": 0.09},
"FU": {"合约单位": 10, "保证金": 0.15},
"HC": {"合约单位": 10, "保证金": 0.13},
"I": {"合约单位": 100, "保证金": 0.13},
"IC": {"合约单位": 1, "保证金": 0.14},
"IF": {"合约单位": 1, "保证金": 0.12},
"IH": {"合约单位": 1, "保证金": 0.12},
"IM": {"合约单位": 1, "保证金": 0.15},
"J": {"合约单位": 100, "保证金": 0.2},
"JD": {"合约单位": 10, "保证金": 0.09},
"JM": {"合约单位": 60, "保证金": 0.2},
"L": {"合约单位": 5, "保证金": 0.11},
"LC": {"合约单位": 1, "保证金": 0.09},
"LH": {"合约单位": 16, "保证金": 0.15},
"LU": {"合约单位": 10, "保证金": 0.15},
"M": {"合约单位": 10, "保证金": 0.1},
"MA": {"合约单位": 10, "保证金": 0.08},
"NI": {"合约单位": 1, "保证金": 0.19},
"NR": {"合约单位": 10, "保证金": 0.1},
"OI": {"合约单位": 10, "保证金": 0.09},
"P": {"合约单位": 10, "保证金": 0.12},
"PB": {"合约单位": 5, "保证金": 0.14},
"PF": {"合约单位": 5, "保证金": 0.08},
"PG": {"合约单位": 20, "保证金": 0.13},
"PK": {"合约单位": 5, "保证金": 0.08},
"PP": {"合约单位": 5, "保证金": 0.11},
"PX": {"合约单位": 5, "保证金": 0.12},
"RB": {"合约单位": 10, "保证金": 0.13},
"RM": {"合约单位": 10, "保证金": 0.09},
"RR": {"合约单位": 10, "保证金": 0.06},
"RU": {"合约单位": 10, "保证金": 0.1},
"SA": {"合约单位": 20, "保证金": 0.09},
"SC": {"合约单位": 1000, "保证金": 0.15},
"SF": {"合约单位": 5, "保证金": 0.12},
"SH": {"合约单位": 30, "保证金": 0.09},
"SI": {"合约单位": 5, "保证金": 0.1},
"SM": {"合约单位": 5, "保证金": 0.12},
"SN": {"合约单位": 1, "保证金": 0.14},
"SP": {"合约单位": 10, "保证金": 0.15},
"SR": {"合约单位": 10, "保证金": 0.07},
"SS": {"合约单位": 5, "保证金": 0.14},
"T": {"合约单位": 10000, "保证金": 0.02},
"TA": {"合约单位": 5, "保证金": 0.07},
"TF": {"合约单位": 10000, "保证金": 0.012},
"TL": {"合约单位": 10000, "保证金": 0.035},
"TS": {"合约单位": 20000, "保证金": 0.005},
"UR": {"合约单位": 20, "保证金": 0.08},
"V": {"合约单位": 5, "保证金": 0.11},
"Y": {"合约单位": 10, "保证金": 0.09},
"ZN": {"合约单位": 5, "保证金": 0.14},
}
clearing_time_dict = {'sc': s_time(2,30), 'bc': s_time(1,0), 'lu': s_time(23,0), 'nr': s_time(23,0),'au': s_time(2,30), 'ag': s_time(2,30),
'ss': s_time(1,0), 'sn': s_time(1,0), 'ni': s_time(1,0), 'pb': s_time(1,0),'zn': s_time(1,0), 'al': s_time(1,0), 'cu': s_time(1,0),
'ru': s_time(23,0), 'rb': s_time(23,0), 'hc': s_time(23,0), 'fu': s_time(23,0), 'bu': s_time(23,0), 'sp': s_time(23,0),
'PF': s_time(23,0), 'SR': s_time(23,0), 'CF': s_time(23,0), 'CY': s_time(23,0), 'RM': s_time(23,0), 'MA': s_time(23,0),
'TA': s_time(23,0), 'ZC': s_time(23,0), 'FG': s_time(23,0), 'OI': s_time(23,0), 'SA': s_time(23,0),
'p': s_time(23,0), 'j': s_time(23,0), 'jm': s_time(23,0), 'i': s_time(23,0), 'l': s_time(23,0), 'v': s_time(23,0),
'pp': s_time(23,0), 'eg': s_time(23,0), 'c': s_time(23,0), 'cs': s_time(23,0), 'y': s_time(23,0), 'm': s_time(23,0),
'a': s_time(23,0), 'b': s_time(23,0), 'rr': s_time(23,0), 'eb': s_time(23,0), 'pg': s_time(23,0)}
#交易程序---------------------------------------------------------------------------------------------------------------------------------------------------------------------
class ParamObj:
# 策略需要用到的参数,在新建合约对象的时候传入!!
# 策略需要用到的参数,在新建合约对象的时候传入!!
# 策略需要用到的参数,在新建合约对象的时候传入!!
symbol = None #合约名称
Lots = None #下单手数
py = None #设置委托价格的偏移,更加容易促成成交
trailing_stop_percent = None #跟踪出场参数
fixed_stop_loss_percent = None #固定出场参数
dj_X = None #开仓的堆积参数
delta = None #开仓的delta参数
sum_delta = None #开仓的delta累积参数
失衡=None
堆积=None
周期=None
# 策略需要用到的变量
cont_df = 0
pos = 0
clearing_executed = False
kgdata = True
多头止损价格 = 0
空头止损价格 = 0
多头成本价格 = 0
空头成本价格 = 0
多头开仓历时=0
空头开仓历时=0
平_多时间=4
平_空时间=4
def __init__(self, symbol, Lots, py,dj_X, delta, sum_delta,失衡,堆积,周期,平_多时间,平_空时间):
self.symbol = symbol
self.Lots = Lots
self.py = py
self.dj_X = dj_X
self.delta = delta
self.sum_delta = sum_delta
self.失衡=失衡
self.堆积=堆积
self.周期=周期
self.平_多时间=平_多时间
self.平_空时间=平_空时间
class MyTrader(TraderApiBase):
def __init__(self, broker_id, td_server, investor_id, password, app_id, auth_code, md_queue=None, page_dir='', private_resume_type=2, public_resume_type=2):
self.param_dict = {}
self.queue_dict = {}
self.品种=' '
def tickcome(self,md_queue):
global previous_volume
data=md_queue
instrument_id = data['InstrumentID'].decode() # 品种代码
ActionDay = data['ActionDay'].decode() # 交易日日期
update_time = data['UpdateTime'].decode() # 更新时间
update_millisec = str(data['UpdateMillisec']) # 更新毫秒数
created_at = ActionDay[:4] + '-' + ActionDay[4:6] + '-' + ActionDay[6:] + ' ' + update_time + '.' + update_millisec #创建时间
# 构建tick字典
tick = {
'symbol': instrument_id, # 品种代码和交易所ID
'created_at':datetime.strptime(created_at, "%Y-%m-%d %H:%M:%S.%f"),
#'created_at': created_at, # 创建时间
'price': float(data['LastPrice']), # 最新价
'last_volume': int(data['Volume']) - previous_volume.get(instrument_id, 0) if previous_volume.get(instrument_id, 0) != 0 else 0, # 瞬时成交量
'bid_p': float(data['BidPrice1']), # 买价
'bid_v': int(data['BidVolume1']), # 买量
'ask_p': float(data['AskPrice1']), # 卖价
'ask_v': int(data['AskVolume1']), # 卖量
'UpperLimitPrice': float(data['UpperLimitPrice']), # 涨停价
'LowerLimitPrice': float(data['LowerLimitPrice']), # 跌停价
'TradingDay': data['TradingDay'].decode(), # 交易日日期
'cum_volume': int(data['Volume']), # 最新总成交量
'cum_amount': float(data['Turnover']), # 最新总成交额
'cum_position': int(data['OpenInterest']), # 合约持仓量
}
# print('&&&&&&&&',instrument_id, tick['created_at'],'vol:',tick['last_volume'])
# 更新上一个Tick的成交量
previous_volume[instrument_id] = int(data['Volume'])
if tick['last_volume']>0:
#print(tick['created_at'],'vol:',tick['last_volume'])
# 处理Tick数据
self.on_tick(tick)
def can_time(self,hour, minute):
hour = str(hour)
minute = str(minute)
if len(minute) == 1:
minute = "0" + minute
return int(hour + minute)
def on_tick(self,tick):
tm=self.can_time(tick['created_at'].hour,tick['created_at'].minute)
#print(tick['symbol'])
#print(1)
#if tm>1500 and tm<2100 :
# return
if tick['last_volume']==0:
return
quotes = tick
timetick=str(tick['created_at']).replace('+08:00', '')
tsymbol=tick['symbol']
if tsymbol not in tsymbollist.keys():
# 获取tick的买卖价和买卖量
tsymbollist[tsymbol]=tick
bid_p=quotes['bid_p']
ask_p=quotes['ask_p']
bid_v=quotes['bid_v']
ask_v=quotes['ask_v']
else:
# 获取上一个tick的买卖价和买卖量
rquotes =tsymbollist[tsymbol]
bid_p=rquotes['bid_p']
ask_p=rquotes['ask_p']
bid_v=rquotes['bid_v']
ask_v=rquotes['ask_v']
tsymbollist[tsymbol]=tick
tick_dt=pd.DataFrame({'datetime':timetick,'symbol':tick['symbol'],'mainsym':tick['symbol'].rstrip('0123456789').upper(),'lastprice':tick['price'],
'vol':tick['last_volume'],
'bid_p':bid_p,'ask_p':ask_p,'bid_v':bid_v,'ask_v':ask_v},index=[0])
sym = tick_dt['symbol'][0]
#print(tick_dt)
self.tickdata(tick_dt,sym)
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def data_of(self,symbol, df):
global trade_dfs
# 将df数据合并到trader_df中
# if symbol not in trade_dfs.keys():
# trade_df = pd.DataFrame({})
# else:
# trade_df = trade_dfs[symbol]
trade_dfs[symbol] = pd.concat([trade_dfs[symbol], df], ignore_index=True)
# print('!!!!!!!!!!!trader_df: ', symbol, df['datetime'].iloc[-1])
#print(trader_df)
def process(self,bidDict, askDict, symbol):
try:
# 尝试从quotedict中获取对应品种的报价数据
dic = quotedict[symbol]
bidDictResult = dic['bidDictResult']
askDictResult = dic['askDictResult']
except:
# 如果获取失败则初始化bidDictResult和askDictResult为空字典
bidDictResult, askDictResult = {}, {}
# 将所有买盘字典和卖盘字典的key合并并按升序排序
sList = sorted(set(list(bidDict.keys()) + list(askDict.keys())))
# 遍历所有的key将相同key的值进行累加
for s in sList:
if s in bidDict:
if s in bidDictResult:
bidDictResult[s] = int(bidDict[s]) + bidDictResult[s]
else:
bidDictResult[s] = int(bidDict[s])
if s not in askDictResult:
askDictResult[s] = 0
else:
if s in askDictResult:
askDictResult[s] = int(askDict[s]) + askDictResult[s]
else:
askDictResult[s] = int(askDict[s])
if s not in bidDictResult:
bidDictResult[s] = 0
# 构建包含bidDictResult和askDictResult的字典并存入quotedict中
df = {'bidDictResult': bidDictResult, 'askDictResult': askDictResult}
quotedict[symbol] = df
return bidDictResult, askDictResult
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def tickdata(self,df,symbol):
tickdata =pd.DataFrame({'datetime':df['datetime'],'symbol':df['symbol'],'lastprice':df['lastprice'],
'volume':df['vol'],'bid_p':df['bid_p'],'bid_v':df['bid_v'],'ask_p':df['ask_p'],'ask_v':df['ask_v']})
try:
if symbol in tickdatadict.keys():
rdf=tickdatadict[symbol]
rdftm=pd.to_datetime(rdf['bartime'][0]).strftime('%Y-%m-%d %H:%M:%S')
now=str(tickdata['datetime'][0])
if now>rdftm:
try:
oo=ofdatadict[symbol]
self.data_of(symbol, oo)
#print('oo',oo)
if symbol in quotedict.keys():
quotedict.pop(symbol)
if symbol in tickdatadict.keys():
tickdatadict.pop(symbol)
if symbol in ofdatadict.keys():
ofdatadict.pop(symbol)
except IOError as e:
print('rdftm捕获到异常',e)
tickdata['bartime'] = pd.to_datetime(tickdata['datetime'])
tickdata['open'] = tickdata['lastprice']
tickdata['high'] = tickdata['lastprice']
tickdata['low'] = tickdata['lastprice']
tickdata['close'] = tickdata['lastprice']
tickdata['starttime'] = tickdata['datetime']
else:
tickdata['bartime'] = rdf['bartime']
tickdata['open'] = rdf['open']
tickdata['high'] = max(tickdata['lastprice'].values,rdf['high'].values)
tickdata['low'] = min(tickdata['lastprice'].values,rdf['low'].values)
tickdata['close'] = tickdata['lastprice']
tickdata['volume']=df['vol']+rdf['volume'].values
tickdata['starttime'] = rdf['starttime']
else :
print('新bar的第一个tick进入')
tickdata['bartime'] = pd.to_datetime(tickdata['datetime'])
tickdata['open'] = tickdata['lastprice']
tickdata['high'] = tickdata['lastprice']
tickdata['low'] = tickdata['lastprice']
tickdata['close'] = tickdata['lastprice']
tickdata['starttime'] = tickdata['datetime']
except IOError as e:
print('捕获到异常',e)
tickdata['bartime'] = pd.to_datetime(tickdata['bartime'])
param = self.param_dict[self.品种]
bardata = tickdata.resample(on = 'bartime',rule = param.周期,label = 'right',closed = 'right').agg({'starttime':'first','symbol':'last','open':'first','high':'max','low':'min','close':'last','volume':'sum'}).reset_index(drop = False)
bardata =bardata.dropna().reset_index(drop = True)
bardata['bartime'] = pd.to_datetime(bardata['bartime'][0]).strftime('%Y-%m-%d %H:%M:%S')
tickdatadict[symbol]=bardata
tickdata['volume']=df['vol'].values
#print(bardata['symbol'].values,bardata['bartime'].values)
self.orderflow_df_new(tickdata,bardata,symbol)
# time.sleep(0.5)
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def orderflow_df_new(self,df_tick,df_min,symbol):
startArray = pd.to_datetime(df_min['starttime']).values
voluememin= df_min['volume'].values
highs=df_min['high'].values
lows=df_min['low'].values
opens=df_min['open'].values
closes=df_min['close'].values
#endArray = pd.to_datetime(df_min['bartime']).values
endArray = df_min['bartime'].values
#print(endArray)
deltaArray = np.zeros((len(endArray),))
tTickArray = pd.to_datetime(df_tick['datetime']).values
bp1TickArray = df_tick['bid_p'].values
ap1TickArray = df_tick['ask_p'].values
lastTickArray = df_tick['lastprice'].values
volumeTickArray = df_tick['volume'].values
symbolarray = df_tick['symbol'].values
indexFinal = 0
for index,tEnd in enumerate(endArray):
dt=endArray[index]
start = startArray[index]
bidDict = {}
askDict = {}
bar_vol=voluememin[index]
bar_close=closes[index]
bar_open=opens[index]
bar_low=lows[index]
bar_high=highs[index]
bar_symbol=symbolarray[index]
# for indexTick in range(indexFinal,len(df_tick)):
# if tTickArray[indexTick] >= tEnd:
# break
# elif (tTickArray[indexTick] >= start) & (tTickArray[indexTick] < tEnd):
Bp = round(bp1TickArray[0],4)
Ap = round(ap1TickArray[0],4)
LastPrice = round(lastTickArray[0],4)
Volume = volumeTickArray[0]
if LastPrice >= Ap:
if str(LastPrice) in askDict.keys():
askDict[str(LastPrice)] += Volume
else:
askDict[str(LastPrice)] = Volume
if LastPrice <= Bp:
if str(LastPrice) in bidDict.keys():
bidDict[str(LastPrice)] += Volume
else:
bidDict[str(LastPrice)] = Volume
# indexFinal = indexTick
bidDictResult,askDictResult = self.process(bidDict,askDict,symbol)
bidDictResult=dict(sorted(bidDictResult.items(),key=operator.itemgetter(0)))
askDictResult=dict(sorted(askDictResult.items(),key=operator.itemgetter(0)))
prinslist=list(bidDictResult.keys())
asklist=list(askDictResult.values())
bidlist=list(bidDictResult.values())
delta=(sum(askDictResult.values()) - sum(bidDictResult.values()))
#print(prinslist,asklist,bidlist)
#print(len(prinslist),len(bidDictResult),len(askDictResult))
df=pd.DataFrame({'price':pd.Series([prinslist]),'Ask':pd.Series([asklist]),'Bid':pd.Series([bidlist])})
#df=pd.DataFrame({'price':pd.Series(bidDictResult.keys()),'Ask':pd.Series(askDictResult.values()),'Bid':pd.Series(bidDictResult.values())})
df['symbol']=bar_symbol
df['datetime']=dt
df['delta']=str(delta)
df['close']=bar_close
df['open']=bar_open
df['high']=bar_high
df['low']=bar_low
df['volume']=bar_vol
#df['ticktime']=tTickArray[0]
df['dj'] = self.GetOrderFlow_dj(df)
ofdatadict[symbol]=df
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
def GetOrderFlow_dj(self,kData):
param = self.param_dict[self.品种]
Config = {
'Value1': param.失衡,
'Value2': param.堆积,
'Value4': True,
}
aryData = kData
djcout = 0
# 遍历kData中的每一行计算djcout指标
for index, row in aryData.iterrows():
kItem = aryData.iloc[index]
high = kItem['high']
low = kItem['low']
close = kItem['close']
open = kItem['open']
dtime = kItem['datetime']
price_s = kItem['price']
Ask_s = kItem['Ask']
Bid_s = kItem['Bid']
delta = kItem['delta']
price_s = price_s
Ask_s = Ask_s
Bid_s = Bid_s
gj = 0
xq = 0
gxx = 0
xxx = 0
# 遍历price_s中的每一个元素计算相关指标
for i in np.arange(0, len(price_s), 1):
duiji = {
'price': 0,
'time': 0,
'longshort': 0,
}
if i == 0:
delta = delta
order= {
"Price":price_s[i],
"Bid":{ "Value":Bid_s[i]},
"Ask":{ "Value":Ask_s[i]}
}
#空头堆积
if i >= 0 and i < len(price_s) - 1:
if (order["Bid"]["Value"] > Ask_s[i + 1] * int(Config['Value1'])):
gxx += 1
gj += 1
if gj >= int(Config['Value2']) and Config['Value4'] == True:
duiji['price'] = price_s[i]
duiji['time'] = dtime
duiji['longshort'] = -1
if float(duiji['price']) > 0:
djcout += -1
else:
gj = 0
#多头堆积
if i >= 1 and i <= len(price_s) - 1:
if (order["Ask"]["Value"] > Bid_s[i - 1] * int(Config['Value1'])):
xq += 1
xxx += 1
if xq >= int(Config['Value2']) and Config['Value4'] == True:
duiji['price'] = price_s[i]
duiji['time'] = dtime
duiji['longshort'] = 1
if float(duiji['price']) > 0:
djcout += 1
else:
xq = 0
# 返回计算得到的djcout值
return djcout
def OnRtnTrade(self, pTrade):
print("||成交回报||", pTrade)
def OnRspOrderInsert(self, pInputOrder, pRspInfo, nRequestID, bIsLast):
print("||OnRspOrderInsert||", pInputOrder, pRspInfo, nRequestID, bIsLast)
#订单状态通知
def OnRtnOrder(self, pOrder):
print("||订单回报||", pOrder)
#保存OF数据
def save_trade_data(self,df,instrument_id):
# 定义文件路径
csv_file_path = f"ofdata/{instrument_id}_ofdata.csv"
directory = os.path.dirname(csv_file_path)
# 检查目录是否存在,如果不存在则创建它
if not os.path.exists(directory):
os.makedirs(directory)
# 如果文件夹存在,则追加数据;否则,创建新文件并保存整个 DataFrame
if os.path.exists(csv_file_path):
# 仅保存最后一行数据
df.tail(1).to_csv(csv_file_path, mode='a', header=False, index=False)
else:
# 创建新文件并保存整个 DataFrame
df.to_csv(csv_file_path, index=False)
def w_log(self,symbol,log_message):
# 创建文件夹(如果不存在)
log_dir = 'tradelogs'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# 写入日志到 CSV 文件
now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
log_file = os.path.join(log_dir, f'{symbol}log.csv')
# 打印日志到控制台
print(f'{now}: {log_message}')
with open(log_file, 'a', encoding='utf-8',newline='') as csvfile:
writer = csv.writer(csvfile)
# 如果文件为空,写入表头
if csvfile.tell() == 0:
writer.writerow(['time', 'logs'])
writer.writerow([now, log_message])
# 计算单品种资金流向数据
def 资金流向计算(self,df):
# 将 'delta' 和 'close' 转换为数值类型,强制转换错误
df['volume'] = pd.to_numeric(df['volume'], errors='coerce')
df['close'] = pd.to_numeric(df['close'], errors='coerce')
# 删除 'delta' 或 'close' 中的 NaN 值
df = df.dropna(subset=['volume', 'close'])
symbol=df['symbol'].iloc[-1]
symbol = ''.join(filter(str.isalpha, symbol)).upper()
资金净流向 = abs(sum(df['volume']*df['close']))*合约信息[symbol]['合约单位']*合约信息[symbol]['保证金']
更新状态=True
# 将结果放入 DataFrame
result_df = pd.DataFrame({
'资金净流向': [资金净流向],
'更新状态': [更新状态]
})
return result_df
# 收盘清仓
def 收盘清仓(self,symbol,data):
param = self.param_dict[symbol]
# 获取当前时间
current_time = datetime.now().time()
# 设置清仓操作的时间范围114:55到15:00
clearing_time1_start = s_time(14, 55)
clearing_time1_end = s_time(15, 0)
# 设置清仓操作的时间范围200:55到01:00
clearing_time2_start = s_time(22, 55)
clearing_time2_end = s_time(23, 0)
now = datetime.now()
# 创建一个标志变量,用于记录是否已经执行过清仓操作
#param.clearing_executed = False
# 检查当前时间是否在第一个清仓操作的时间范围内,并且清仓操作未执行过
if clearing_time1_start <= current_time <= clearing_time1_end and not param.clearing_executed :
#trade_dfs.drop(trade_dfs.index,inplace=True)#清除当天的行情数据
if param.pos>0:
#平多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
param.pos=0
self.w_log(symbol,f"{symbol}多头清仓操作")
pass
elif param.pos<0:
#平空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
param.pos=0
self.w_log(symbol,f"{symbol}空头清仓操作")
pass
param.clearing_executed = True # 设置标志变量为已执行
# 检查当前时间是否在第二个清仓操作的时间范围内,并且清仓操作未执行过
elif clearing_time2_start <= current_time <= clearing_time2_end and not param.clearing_executed :
#trade_dfs.drop(trade_dfs.index,inplace=True) #清除当天的行情数据
if param.pos>0:
#平多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
param.pos=0
self.w_log(symbol,f"{symbol}多头清仓操作")
pass
elif param.pos<0:
#平空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
param.pos=0
self.w_log(symbol,f"{symbol}空头清仓操作")
pass
param.clearing_executed = True # 设置标志变量为已执行
# 如果不在任何清仓操作的时间范围内,可以执行其他操作或不执行任何操作
else:
param.clearing_executed = False
pass
#print("不在清仓操作时间范围内")
return param.clearing_executed
def cal_sig(self, symbol_queue):
while True:
try:
now=datetime.now()
data = symbol_queue.get(block=True, timeout=5) # 如果5秒没收到新的tick行情则抛出异常
instrument_id = data['InstrumentID'].decode() # 品种代码
size = symbol_queue.qsize()
if size > 1:
print(f'当前{instrument_id}共享队列长度为{size}, 有点阻塞!!!!!')
param = self.param_dict[instrument_id]
self.品种=instrument_id
#OF计算数据开始
self.tickcome(data)
trade_df = trade_dfs[instrument_id]
#清仓开关
run_kg=self.收盘清仓(instrument_id,data)
最新价=data['LastPrice']
sympc=data['InstrumentID'].decode()
# #多头时间出场
if param.pos>0 and param.多头开仓历时>param.平_多时间 :
#平多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
param.pos=0
param.多头止损价格=0
param.多头开仓历时=0
param.多头成本价格=0
self.w_log(sympc,f'历时{param.平_多时间}***多头***{sympc}时间出场价格{最新价}')
#多头价格止损
if param.pos>0 and 最新价<param.多头止损价格 :
#平多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
param.pos=0
param.多头止损价格=0
param.多头开仓历时=0
param.多头成本价格=0
self.w_log(sympc,f'多头止损触发: {最新价},多头止损价格:{param.多头止损价格} ***{sympc}多头止损***')
# #多头跟踪止盈-----------------------暂时用不到------------------------
# elif param.pos>0 and len(trade_df)>1 and 最新价<trade_df['10_MA'].iloc[-1] and 最新价>param.多头成本价格 :
# #平多
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
# param.pos=0
# param.多头止损价格=0
# param.多头开仓历时=0
# param.多头成本价格=0
# self.w_log(sympc,f'多头跟踪止盈触发: {最新价} ***{sympc}多头止盈***')
# # #空头时间出场
if param.pos<0 and param.空头开仓历时>param.平_空时间 :
#平空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
param.pos=0
param.空头止损价格=0
param.空头开仓历时=0
param.空头成本价格=0
self.w_log(sympc,f'历时{param.平_空时间}***空头***{sympc}时间出场价格{最新价}')
#空头价格止损
if param.pos<0 and 最新价>param.空头止损价格 :
#平空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
param.pos=0
param.空头止损价格=0
param.空头开仓历时=0
param.空头成本价格=0
self.w_log(sympc,f'空头止损触发: {最新价},空头止损价格:{param.空头止损价格} ***{sympc}空头止损***')
# #空头跟踪止盈-----------------------暂时用不到------------------------
# elif param.pos<0 and len(trade_df)>1 and 最新价>trade_df['10_MA'].iloc[-1] and 最新价<param.空头成本价格 :
# #平空
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
# param.pos=0
# param.空头止损价格=0
# param.空头开仓历时=0
# param.空头成本价格=0
# self.w_log(sympc,f'空头跟踪止盈触发: {最新价},***{sympc}空头止盈***')
#交易程序开始
if len(trade_df)>param.cont_df and run_kg==False:
#开仓历时更新:
if param.pos>0:
param.多头开仓历时+=1
elif param.pos<0:
param.空头开仓历时+=1
#计算截面数据
截面数据_资金流向[instrument_id]=self.资金流向计算(trade_df)
#日均线
trade_df['dayma']=trade_df['close'].mean()
# 计算5日均线和10日均线即使数据不足5日或10日
trade_df['5_MA'] = trade_df['close'].rolling(window=5, min_periods=1).mean()
trade_df['10_MA'] = trade_df['close'].rolling(window=10, min_periods=1).mean()
# 计算累积的delta值
trade_df['delta'] = trade_df['delta'].astype(float)
trade_df['delta累计'] = trade_df['delta'].cumsum()
#大于日均线
开多1=trade_df['dayma'].iloc[-1] > 0 and trade_df['close'].iloc[-1] > trade_df['dayma'].iloc[-1]
#累计多空净量大于X
开多4=trade_df['delta累计'].iloc[-1] > param.sum_delta and trade_df['delta'].iloc[-1] > param.delta
#小于日均线
开空1=trade_df['dayma'].iloc[-1]>0 and trade_df['close'].iloc[-1] < trade_df['dayma'].iloc[-1]
#累计多空净量小于X
开空4=trade_df['delta累计'].iloc[-1] < -param.sum_delta and trade_df['delta'].iloc[-1] < -param.delta
开多组合= 开多1 and 开多4 and trade_df['dj'].iloc[-1]>param.dj_X and trade_df['5_MA'].iloc[-1] > trade_df['10_MA'].iloc[-1]
开空条件= 开空1 and 开空4 and trade_df['dj'].iloc[-1]<-param.dj_X and trade_df['5_MA'].iloc[-1] < trade_df['10_MA'].iloc[-1]
symm=data['InstrumentID'].decode()
#开平仓
#换仓平多
# if param.pos>0 and symm not in top_two_symbols:
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'1')
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'3')
# param.pos=0
# param.多头止损价格=0
# param.多头开仓历时=0
# param.多头成本价格=0
# self.w_log(symm,f'当前截面品种{top_two_symbols},{symm}不在范围,***多平仓***')
#多头开仓
if param.pos==0 and 开多组合 and symm in top_two_symbols :
#开多
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'0')
param.pos=1
param.多头止损价格=trade_df['low'].iloc[-2]
param.多头成本价格=data['AskPrice1']
param.多头开仓历时=1
self.w_log(symm,f'品种:{symm},委托价格: {param.多头成本价格}***开多***')
#换仓平空
# if param.pos<0 and symm not in top_two_symbols :
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'1')
# self.insert_order(data['ExchangeID'], data['InstrumentID'], data['AskPrice1']+param.py,param.Lots,b'0',b'3')
# param.pos=0
# param.空头止损价格=0
# param.空头开仓历时=0
# param.空头成本价格=0
# self.w_log(symm,f'当前截面品种{top_two_symbols},{symm}不在范围,***空平仓***')
#空头开仓
if param.pos==0 and 开空条件 and symm in top_two_symbols :
#开空
self.insert_order(data['ExchangeID'], data['InstrumentID'], data['BidPrice1']-param.py,param.Lots,b'1',b'0')
param.pos=-1
param.空头止损价格=trade_df['high'].iloc[-2]
param.空头成本价格=data['BidPrice1']
param.空头开仓历时=1
self.w_log(symm,f'品种:{symm},委托价格: {param.空头成本价格}***开空***')
#print(trade_df)
#保存OF数据
self.save_trade_data(trade_df,symm)
#保存bar计数
param.cont_df=len(trade_df)
except queue.Empty:
# print(f"当前合约队列为空,等待新数据插入。")
pass
# 将CTP推送的行情数据分发给对应线程队列去执行
def distribute_tick(self):
while True:
if self.status == 0:
data = None
while not self.md_queue.empty():
data = self.md_queue.get(block=False)
instrument_id = data['InstrumentID'].decode() # 品种代码
try:
self.queue_dict[instrument_id].put(data, block=False) # 往对应合约队列中插入行情
# print(f"{instrument_id}合约数据插入。")
except queue.Full:
# 当某个线程阻塞导致对应队列容量超限时抛出异常,不会影响其他合约的信号计算
print(f"{instrument_id}合约信号计算阻塞导致对应队列已满,请检查对应代码逻辑后重启。")
else:
time.sleep(1)
def start(self, param_dict):
threads = []
self.param_dict = param_dict
thread1 = threading.Thread(target=横截面计算)
for symbol in param_dict.keys():
trade_dfs[symbol] = pd.DataFrame({})
self.queue_dict[symbol] = queue.Queue(10) #为每个合约创建一个限制数为10的队列当计算发生阻塞导致队列达到限制数时会抛出异常
t = threading.Thread(target=self.cal_sig, args=(self.queue_dict[symbol],)) # 为每个合约单独创建一个线程计算开仓逻辑
threads.append(t)
t.start()
thread1.start()
self.distribute_tick()
for t in threads:
t.join()
thread1.join()
# 定义横截面计算函数
def 横截面计算():
global top_two_symbols
while True:
if len(截面数据_资金流向)>5:
goss=1
# 检查是否有任何品种的更新状态为 False如果有则直接返回
for symbol, data in 截面数据_资金流向.items():
if not data['更新状态'].iloc[-1]:
#print(f"品种 {symbol} 的更新状态为 False跳过计算。")
goss=0
break
if goss==1:
# 继续计算资金净流向
sorted_items = sorted(截面数据_资金流向.items(), key=lambda item: item[1]['资金净流向'].iloc[-1], reverse=True)
max_symbol = sorted_items[0][0]
two_max_symbol = sorted_items[1][0]
three_max_symbol = sorted_items[2][0]
four_max_symbol = sorted_items[3][0]
five_max_symbol = sorted_items[4][0]
top_two_symbols = [max_symbol, two_max_symbol,three_max_symbol,four_max_symbol,five_max_symbol]
print(f'选出的活跃品种: {top_two_symbols}')
print(f'截面数据_资金流向: {截面数据_资金流向}')
# 将所有品种的更新状态设置为 False
for symbol in 截面数据_资金流向:
截面数据_资金流向[symbol]['更新状态'] = False
time.sleep(1)
def run_trader(param_dict, broker_id, td_server, investor_id, password, app_id, auth_code, md_queue=None, page_dir='', private_resume_type=2, public_resume_type=2):
my_trader = MyTrader(broker_id, td_server, investor_id, password, app_id, auth_code, md_queue, page_dir, private_resume_type, public_resume_type)
my_trader.start(param_dict)
if __name__ == '__main__':
#global symbol
#公众号松鼠Quant
#主页www.quant789.com
#本策略仅作学习交流使用,实盘交易盈亏投资者个人负责!!!
#版权归松鼠Quant所有禁止转发、转卖源码违者必究。
#注意运行前请先安装好algoplus,
# pip install AlgoPlus
#http://www.algo.plus/ctp/python/0103001.html
# 实盘参数字典,需要实盘交易的合约,新建对应的参数对象即可,以下参数仅供测试使用,不作为实盘参考!!!!
历时平仓=4
param_dict = {}
param_dict['SR409'] = ParamObj(symbol='SR409', Lots=1, py=6,dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['eb2408'] = ParamObj(symbol='eb2408', Lots=2, py=6, dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['SA409'] = ParamObj(symbol='SA409', Lots=1, py=6,dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['pp409'] = ParamObj(symbol='pp409', Lots=2, py=6, dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['OI409'] = ParamObj(symbol='OI409', Lots=1, py=6, dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['a2409'] = ParamObj(symbol='a2409', Lots=1, py=6, dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['p2409'] = ParamObj(symbol='p2409', Lots=1, py=6, dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['RM409'] = ParamObj(symbol='RM409', Lots=2, py=6, dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
param_dict['sp2409'] = ParamObj(symbol='sp2409', Lots=1, py=6, dj_X=0,delta=0,sum_delta=0,失衡=3,堆积=3,周期='1T',平_多时间=历时平仓,平_空时间=历时平仓)
#用simnow模拟不要忘记屏蔽下方实盘的future_account字典
future_account = get_simulate_account(
investor_id='', # simnow账户注意是登录账户的IDSIMNOW个人首页查看
password='', # simnow密码
server_name='电信1', # 电信1、电信2、移动、TEST、N视界
subscribe_list=list(param_dict.keys()), # 合约列表
)
# #实盘用这个不要忘记屏蔽上方simnow的future_account字典
# future_account = FutureAccount(
# broker_id='', # 期货公司BrokerID
# server_dict={'TDServer': "ip:port", 'MDServer': 'ip:port'}, # TDServer为交易服务器MDServer为行情服务器。服务器地址格式为"ip:port。"
# reserve_server_dict={}, # 备用服务器地址
# investor_id='', # 账户
# password='', # 密码
# app_id='simnow_client_test', # 认证使用AppID
# auth_code='0000000000000000', # 认证使用授权码
# subscribe_list=list(param_dict.keys()), # 订阅合约列表
# md_flow_path='./log', # MdApi流文件存储地址默认MD_LOCATION
# td_flow_path='./log', # TraderApi流文件存储地址默认TD_LOCATION
# )
print('开始',len(future_account.subscribe_list))
# 共享队列
share_queue = Queue(maxsize=200)
# 行情进程
md_process = Process(target=run_tick_engine, args=(future_account, [share_queue]))
# 交易进程
trader_process = Process(target=run_trader, args=(
param_dict,
future_account.broker_id,
future_account.server_dict['TDServer'],
future_account.investor_id,
future_account.password,
future_account.app_id,
future_account.auth_code,
share_queue, # 队列
future_account.td_flow_path
))
md_process.start()
trader_process.start()
md_process.join()
trader_process.join()