增加交易策略、交易指标、量化库代码等文件夹
This commit is contained in:
BIN
1.交易策略/1.CTA策略/2.VeighNa策略/Y04 基于趋势判断的股票量化择时策略/Y04趋势择时策略研究报告.pdf
Normal file
BIN
1.交易策略/1.CTA策略/2.VeighNa策略/Y04 基于趋势判断的股票量化择时策略/Y04趋势择时策略研究报告.pdf
Normal file
Binary file not shown.
BIN
1.交易策略/1.CTA策略/2.VeighNa策略/Y04 基于趋势判断的股票量化择时策略/策略加载说明.docx
Normal file
BIN
1.交易策略/1.CTA策略/2.VeighNa策略/Y04 基于趋势判断的股票量化择时策略/策略加载说明.docx
Normal file
Binary file not shown.
97
1.交易策略/1.CTA策略/2.VeighNa策略/Y04 基于趋势判断的股票量化择时策略/趋势择时策略.py
Normal file
97
1.交易策略/1.CTA策略/2.VeighNa策略/Y04 基于趋势判断的股票量化择时策略/趋势择时策略.py
Normal file
@@ -0,0 +1,97 @@
|
||||
|
||||
# coding: utf-8
|
||||
|
||||
# In[ ]:
|
||||
|
||||
# 导入函数库
|
||||
import jqdata
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
# 初始化函数,设定基准等等
|
||||
def initialize(context):
|
||||
# 设定沪深300作为基准
|
||||
set_benchmark('000300.XSHG')
|
||||
# 开启动态复权模式(真实价格)
|
||||
set_option('use_real_price', True)
|
||||
# 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
|
||||
set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')
|
||||
|
||||
#获取沪深300股票池
|
||||
stock_set=get_index_stocks('000300.XSHG')
|
||||
#此处可增加选股条件
|
||||
q = query(
|
||||
valuation.code, # 股票代码
|
||||
).filter(
|
||||
valuation.code.in_(stock_set),#只对设定股票池执行
|
||||
)
|
||||
fdf = get_fundamentals(q)
|
||||
#取前50只股
|
||||
fdf=fdf.head(50)
|
||||
#获取股票列表
|
||||
stock_list=list(fdf['code'])
|
||||
trend={}
|
||||
for security in stock_list:
|
||||
trend[security]='None'
|
||||
|
||||
def handle_data(context, data):
|
||||
N = 20 # 计算TR时的N
|
||||
M = 49 # 计算MATRIX时的M
|
||||
num=3
|
||||
length_of_data = N+M+num # 取closeprice的天数,为了足够计算MATRIX、TRIX
|
||||
|
||||
cash=context.portfolio.available_cash/50
|
||||
for security in stock_list:
|
||||
close_price=attribute_history(security,length_of_data,'1d',('close'),skip_paused=True)
|
||||
where_are_nan = np.isnan(close_price)
|
||||
where_are_inf = np.isinf(close_price)
|
||||
close_price[where_are_nan] = 0
|
||||
close_price[where_are_inf] = 0
|
||||
|
||||
MA5=close_price['close'][-5:].mean()
|
||||
MA10=close_price['close'][-10:].mean()
|
||||
ma5=close_price['close'][-6:-1].mean()
|
||||
ma10=close_price['close'][-11:-1].mean()
|
||||
|
||||
price_array={}
|
||||
for i in range(0,M+num):
|
||||
price_array[i]=close_price['close'][i:i+N]
|
||||
#TR=收盘价的N日指数移动平均
|
||||
TR={}
|
||||
for i in range(0,M+num):
|
||||
TR[i]=np.mean(price_array[i])
|
||||
#TRIX=(TR-昨日TR)/昨日TR*100
|
||||
TRIX={}
|
||||
for i in range(1,M+num):
|
||||
if TR[i]==0:
|
||||
TRIX[i]=0
|
||||
continue
|
||||
TRIX[i]=(TR[i]-TR[i-1])/TR[i]*100
|
||||
#MATRIX=TRIX的M日简单移动平均
|
||||
MATRIX={}
|
||||
for i in range(0,num):
|
||||
TRIX_sum=0
|
||||
for j in range(1,M):
|
||||
TRIX_sum=TRIX_sum+TRIX[i+j]
|
||||
MATRIX[i]=TRIX_sum/M
|
||||
current_price=data[security].price
|
||||
|
||||
length=0
|
||||
for i in range(0,num-1):
|
||||
if TRIX[M+i]>MATRIX[i]:
|
||||
length=length+1
|
||||
else:
|
||||
length=length-1
|
||||
if length>0 and MATRIX[num-1]>MATRIX[0]:
|
||||
trend[security]='up'
|
||||
elif length<0 and MATRIX[num-1]<MATRIX[0]:
|
||||
trend[security]='down'
|
||||
|
||||
if trend[security]=='up':
|
||||
order_value(security,cash)
|
||||
elif trend[security]=='down' and security in context.portfolio.positions:
|
||||
if MA5<MA10:
|
||||
order_target(security,0)
|
||||
elif MA5>MA10 and ma5<ma10 :
|
||||
order_value(security,cash)
|
||||
|
||||
Reference in New Issue
Block a user