增加交易策略、交易指标、量化库代码等文件夹

This commit is contained in:
Win_home
2025-04-27 15:54:09 +08:00
parent ca3b209096
commit f57150dae8
589 changed files with 854346 additions and 1757 deletions

View File

@@ -0,0 +1,144 @@
from vnpy_ctastrategy import (
CtaTemplate,
StopOrder,
TickData,
BarData,
TradeData,
OrderData,
BarGenerator,
ArrayManager,
)
class AtrRsiStrategy(CtaTemplate):
""""""
author = "用Python的交易员"
atr_length = 22
atr_ma_length = 10
rsi_length = 5
rsi_entry = 16
trailing_percent = 0.8
fixed_size = 1
atr_value = 0
atr_ma = 0
rsi_value = 0
rsi_buy = 0
rsi_sell = 0
intra_trade_high = 0
intra_trade_low = 0
parameters = [
"atr_length",
"atr_ma_length",
"rsi_length",
"rsi_entry",
"trailing_percent",
"fixed_size",
]
variables = [
"atr_value",
"atr_ma",
"rsi_value",
"rsi_buy",
"rsi_sell",
"intra_trade_high",
"intra_trade_low",
]
def __init__(self, cta_engine, strategy_name, vt_symbol, setting):
""""""
super().__init__(cta_engine, strategy_name, vt_symbol, setting)
self.bg = BarGenerator(self.on_bar)
self.am = ArrayManager()
def on_init(self):
"""
Callback when strategy is inited.
"""
self.write_log("策略初始化")
self.rsi_buy = 50 + self.rsi_entry
self.rsi_sell = 50 - self.rsi_entry
self.load_bar(10)
def on_start(self):
"""
Callback when strategy is started.
"""
self.write_log("策略启动")
def on_stop(self):
"""
Callback when strategy is stopped.
"""
self.write_log("策略停止")
def on_tick(self, tick: TickData):
"""
Callback of new tick data update.
"""
self.bg.update_tick(tick)
def on_bar(self, bar: BarData):
"""
Callback of new bar data update.
"""
self.cancel_all()
am = self.am
am.update_bar(bar)
if not am.inited:
return
atr_array = am.atr(self.atr_length, array=True)
self.atr_value = atr_array[-1]
self.atr_ma = atr_array[-self.atr_ma_length :].mean()
self.rsi_value = am.rsi(self.rsi_length)
if self.pos == 0:
self.intra_trade_high = bar.high_price
self.intra_trade_low = bar.low_price
if self.atr_value > self.atr_ma:
if self.rsi_value > self.rsi_buy:
self.buy(bar.close_price + 5, self.fixed_size)
elif self.rsi_value < self.rsi_sell:
self.short(bar.close_price - 5, self.fixed_size)
elif self.pos > 0:
self.intra_trade_high = max(self.intra_trade_high, bar.high_price)
self.intra_trade_low = bar.low_price
long_stop = self.intra_trade_high * (1 - self.trailing_percent / 100)
self.sell(long_stop, abs(self.pos), stop=True)
elif self.pos < 0:
self.intra_trade_low = min(self.intra_trade_low, bar.low_price)
self.intra_trade_high = bar.high_price
short_stop = self.intra_trade_low * (1 + self.trailing_percent / 100)
self.cover(short_stop, abs(self.pos), stop=True)
self.put_event()
def on_order(self, order: OrderData):
"""
Callback of new order data update.
"""
pass
def on_trade(self, trade: TradeData):
"""
Callback of new trade data update.
"""
self.put_event()
def on_stop_order(self, stop_order: StopOrder):
"""
Callback of stop order update.
"""
pass

View File

@@ -0,0 +1,114 @@
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
def initialize(context):
# 设定沪深300作为基准
set_benchmark('000300.XSHG')
# 开启动态复权模式(真实价格)
set_option('use_real_price', True)
# 股票类交易手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, \
open_commission=0.0003, close_commission=0.0003,\
close_today_commission=0, min_commission=5), type='stock')
def handle_data(context, data):
#获取沪深300股票池
stock_set=get_index_stocks('000300.XSHG')
#此处可增加选股条件
q = query(
valuation.code, # 股票代码
).filter(
valuation.code.in_(stock_set),#只对设定股票池执行
)
#获取财务数据,指定日期为回测当天
current_date=context.current_dt.strftime('%Y-%m-%d')
fdf = get_fundamentals(q,current_date)
#取前50只股
fdf=fdf.head(100)
#获取股票列表
get_stocks=list(fdf['code'])
# 去除ST*ST
st=get_extras('is_st',get_stocks,current_date,current_date, df=True)
st=st.loc[current_date]
get_stocks=list(st[st==False].index)
#考虑5天的历史数据
num=5
#轨线用前面20天数据计算
days=20
#每只股票可用资金为当前资金除以50
cash=context.portfolio.available_cash/100
#获取所有股票前num+days天收盘价数据
price=history(num+days,'1d','close',get_stocks,skip_paused=True)
where_are_nan = np.isnan(price)
where_are_inf = np.isinf(price)
price[where_are_nan] = 0
price[where_are_inf] = 0
#循环每只股
for security in get_stocks:
#用数组保存均值大小为num
mid=np.arange(num)
#标准差
std=np.arange(num)
#定义数组大小
close_data=np.arange(num*days).reshape(num,days)
for i in range(0,num):
for j in range(0,days):
close_data[i][j]=price[security][i+j]
#中轨线即均值为days天收盘价数据平均
mid[i]=np.mean(close_data[i])
#计算标准差
std[i]=np.std(close_data[i])
#上轨线=中轨线+两倍的标准差
up=mid[num-1]+2*std[num-1]
#下轨线
down=mid[num-1]-2*std[num-1]
#保存num天数据判断开口收口或平口
boll=0
for i in range(0,num-1):
if std[i]>std[i+1]:
boll=boll+1
else:
boll=boll-1
#判断目前股票是否停牌
paused=data[security].paused
#取得当前股票价格
current_price=data[security].price
#如果连续num天开口
if boll==-4:
#如果当前价格超过昨日的上轨且价格高于均线
if current_price>up and current_price>mid[num-1]:
#计算可以买多少股票
num_of_shares=int(cash/current_price)
#如果可以买的数量超过0并且股票未停牌
if num_of_shares>0 and paused==False:
#购买股票
order(security,+num_of_shares)
#如果当前价格跌破了昨日的下轨且价格低于均线
elif current_price<down and current_price<mid[num-1]:
#如果股票未停牌
if paused==False:
#将股票卖空
order_target(security,0)
#如果连续num天收口
if boll==4:
#股价超过上轨且价格低于均线时卖
if current_price>up and current_price<mid[num-1]:
if paused==False:
order_target(security,0)
#跌破下轨且价格高于均线时买
elif current_price<down and current_price>mid[num-1]:
num_of_shares=int(cash/current_price)
if num_of_shares>0 and paused==False:
order(security,+num_of_shares)
#连续平口
if boll in range(-1,1):
#价格在中轨线上且昨日均价高于三天前
if current_price>mid[num-1] and mid[num-1]>mid[num-3]:
num_of_shares=int(cash/current_price)
if num_of_shares>0 and paused==False:
order(security,+num_of_shares)
if current_price<mid[num-1] and mid[num-1]<mid[num-3]:
if paused==False:
order_target(security,0)

View File

@@ -0,0 +1,97 @@
# coding: utf-8
# In[ ]:
# 导入函数库
import jqdata
import pandas as pd
import numpy as np
# 初始化函数,设定基准等等
def initialize(context):
# 设定沪深300作为基准
set_benchmark('000300.XSHG')
# 开启动态复权模式(真实价格)
set_option('use_real_price', True)
# 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')
#获取沪深300股票池
stock_set=get_index_stocks('000300.XSHG')
#此处可增加选股条件
q = query(
valuation.code, # 股票代码
).filter(
valuation.code.in_(stock_set),#只对设定股票池执行
)
fdf = get_fundamentals(q)
#取前50只股
fdf=fdf.head(50)
#获取股票列表
stock_list=list(fdf['code'])
trend={}
for security in stock_list:
trend[security]='None'
def handle_data(context, data):
N = 20 # 计算TR时的N
M = 49 # 计算MATRIX时的M
num=3
length_of_data = N+M+num # 取closeprice的天数为了足够计算MATRIX、TRIX
cash=context.portfolio.available_cash/50
for security in stock_list:
close_price=attribute_history(security,length_of_data,'1d',('close'),skip_paused=True)
where_are_nan = np.isnan(close_price)
where_are_inf = np.isinf(close_price)
close_price[where_are_nan] = 0
close_price[where_are_inf] = 0
MA5=close_price['close'][-5:].mean()
MA10=close_price['close'][-10:].mean()
ma5=close_price['close'][-6:-1].mean()
ma10=close_price['close'][-11:-1].mean()
price_array={}
for i in range(0,M+num):
price_array[i]=close_price['close'][i:i+N]
#TR=收盘价的N日指数移动平均
TR={}
for i in range(0,M+num):
TR[i]=np.mean(price_array[i])
#TRIX=(TR-昨日TR)/昨日TR*100
TRIX={}
for i in range(1,M+num):
if TR[i]==0:
TRIX[i]=0
continue
TRIX[i]=(TR[i]-TR[i-1])/TR[i]*100
#MATRIX=TRIX的M日简单移动平均
MATRIX={}
for i in range(0,num):
TRIX_sum=0
for j in range(1,M):
TRIX_sum=TRIX_sum+TRIX[i+j]
MATRIX[i]=TRIX_sum/M
current_price=data[security].price
length=0
for i in range(0,num-1):
if TRIX[M+i]>MATRIX[i]:
length=length+1
else:
length=length-1
if length>0 and MATRIX[num-1]>MATRIX[0]:
trend[security]='up'
elif length<0 and MATRIX[num-1]<MATRIX[0]:
trend[security]='down'
if trend[security]=='up':
order_value(security,cash)
elif trend[security]=='down' and security in context.portfolio.positions:
if MA5<MA10:
order_target(security,0)
elif MA5>MA10 and ma5<ma10 :
order_value(security,cash)