增加交易策略、交易指标、量化库代码等文件夹

This commit is contained in:
Win_home
2025-04-27 15:54:09 +08:00
parent ca3b209096
commit f57150dae8
589 changed files with 854346 additions and 1757 deletions

View File

@@ -0,0 +1,210 @@
from vnpy_ctastrategy import (
CtaTemplate,
TargetPosTemplate,
StopOrder,
TickData,
BarData,
TradeData,
OrderData,
BarGenerator,
ArrayManager,
)
import pandas as pd
import numpy as np
import talib
class vip17_duo(CtaTemplate):
"""
VIP17多头策略
基于多个技术指标的多头策略,当满足一定数量的多头条件时开仓
"""
author = "松鼠Quant"
# 策略参数
total_score = 5 # 开仓分数阈值
entry_strength = 90 # 趋势强度的进场值
length = 5 # 强弱指标和通道计算的周期值
# 指标参数
rpm_period = 14 # RPM Period
bbo_period = 16 # BBO Period
macd_fast_period = 12 # MACD Fast Period
macd_slow_period = 24 # MACD Slow Period
macd_signal_period = 9 # MACD Signal Period
rsi_period = 14 # RSI Period
cci_period = 14 # CCI Period
stoch_k_period = 14 # Stochastic %K Length
stoch_k_smooth = 1 # Stochastic %K Smoothing
stoch_d_smooth = 3 # Stochastic %D Smoothing
supertrend_period = 10 # SUPERTREND Period
supertrend_factor = 2 # SUPERTREND Factor
parameters = ["total_score", "entry_strength", "length",
"macd_fast_period", "macd_slow_period", "macd_signal_period",
"rsi_period", "cci_period", "stoch_k_period"]
variables = ["current_score"]
def __init__(self, cta_engine, strategy_name, vt_symbol, setting):
super().__init__(cta_engine, strategy_name, vt_symbol, setting)
self.bg = BarGenerator(self.on_bar)
self.am = ArrayManager(size=100)
# 指标变量
self.current_score = 0
self.market_strength = 0
self.supertrend_value = 0
def on_init(self):
"""
策略初始化
"""
self.write_log("策略初始化")
self.load_bar(100)
def on_start(self):
"""
策略启动
"""
self.write_log("策略启动")
def on_stop(self):
"""
策略停止
"""
self.write_log("策略停止")
def on_tick(self, tick: TickData):
"""
Tick数据更新
"""
self.bg.update_tick(tick)
def calculate_market_strength(self):
"""计算市场强度指标"""
close_change = self.am.close_array[1:] - self.am.close_array[:-1]
up_closes = 0
dn_closes = 0
for i in range(self.length):
if close_change[-i-1] > 0:
up_closes += close_change[-i-1]
else:
dn_closes += close_change[-i-1]
sum_change = np.sum(close_change[-self.length:])
if sum_change >= 0:
self.market_strength = (sum_change / up_closes * 100) if up_closes != 0 else 0
else:
self.market_strength = (sum_change / abs(dn_closes) * 100) if dn_closes != 0 else 0
return self.market_strength >= self.entry_strength
def calculate_supertrend(self):
"""计算SuperTrend指标"""
atr = talib.ATR(self.am.high_array, self.am.low_array,
self.am.close_array, self.supertrend_period)
basic_upper = (self.am.high_array + self.am.low_array) / 2 + self.supertrend_factor * atr
basic_lower = (self.am.high_array + self.am.low_array) / 2 - self.supertrend_factor * atr
# 简化的SuperTrend计算
self.supertrend_value = basic_lower[-1]
return self.am.close_array[-1] > self.supertrend_value
def calculate_score(self):
"""
计算综合得分
"""
score = 0
# MACD条件 - 多头信号
# 使用talib直接计算MACD
macd, signal, hist = talib.MACD(
self.am.close_array,
fastperiod=self.macd_fast_period,
slowperiod=self.macd_slow_period,
signalperiod=self.macd_signal_period
)
if not np.isnan(macd[-1]) and not np.isnan(signal[-1]):
if macd[-1] > signal[-1]: # 多头信号MACD线在信号线上方
score += 1
# RSI条件 - 多头信号
rsi = talib.RSI(self.am.close_array, timeperiod=self.rsi_period)
if not np.isnan(rsi[-1]) and rsi[-1] > 50: # 多头信号RSI大于50
score += 1
# Stochastic条件 - 多头信号
k, d = talib.STOCH(
self.am.high_array,
self.am.low_array,
self.am.close_array,
fastk_period=self.stoch_k_period,
slowk_period=self.stoch_k_smooth,
slowd_period=self.stoch_d_smooth
)
if not np.isnan(k[-1]) and k[-1] > 50: # 多头信号K值大于50
score += 1
# CCI条件 - 多头信号
cci = talib.CCI(
self.am.high_array,
self.am.low_array,
self.am.close_array,
timeperiod=self.cci_period
)
if not np.isnan(cci[-1]) and cci[-1] > 0: # 多头信号CCI大于0
score += 1
# Supertrend条件
if self.calculate_supertrend():
score += 1
# 市场强度条件
if self.calculate_market_strength():
score += 1
return score
def on_bar(self, bar: BarData):
"""
K线更新回调
"""
self.am.update_bar(bar)
if not self.am.inited:
return
# 计算当前得分
self.current_score = self.calculate_score()
# 交易信号
if self.current_score >= self.total_score and not self.pos:
self.buy(bar.close_price + 5, 1)
elif self.current_score == 0 and self.pos > 0:
self.sell(bar.close_price - 5, abs(self.pos))
# 输出当前得分
self.put_event()
def on_trade(self, trade: TradeData):
"""
成交回调
"""
self.put_event()
def on_order(self, order: OrderData):
"""
委托回调
"""
pass
def on_stop_order(self, stop_order: StopOrder):
"""
停止单回调
"""
pass

View File

@@ -0,0 +1,208 @@
from vnpy_ctastrategy import (
CtaTemplate,
TargetPosTemplate,
StopOrder,
TickData,
BarData,
TradeData,
OrderData,
BarGenerator,
ArrayManager,
)
import pandas as pd
import numpy as np
import talib
class vip17_kong(CtaTemplate):
"""
VIP17空头策略
基于多个技术指标的空头策略,当满足一定数量的空头条件时开仓
"""
author = "松鼠Quant"
# 策略参数
total_score = 5 # 开仓分数阈值
entry_strength = 90 # 趋势强度的进场值
length = 5 # 强弱指标和通道计算的周期值
# 指标参数
rpm_period = 14 # RPM Period
bbo_period = 16 # BBO Period
macd_fast_period = 12 # MACD Fast Period
macd_slow_period = 24 # MACD Slow Period
macd_signal_period = 9 # MACD Signal Period
rsi_period = 14 # RSI Period
cci_period = 14 # CCI Period
stoch_k_period = 14 # Stochastic %K Length
stoch_k_smooth = 1 # Stochastic %K Smoothing
stoch_d_smooth = 3 # Stochastic %D Smoothing
supertrend_period = 10 # SUPERTREND Period
supertrend_factor = 2 # SUPERTREND Factor
parameters = ["total_score", "entry_strength", "length",
"macd_fast_period", "macd_slow_period", "macd_signal_period",
"rsi_period", "cci_period", "stoch_k_period"]
variables = ["current_score"]
def __init__(self, cta_engine, strategy_name, vt_symbol, setting):
super().__init__(cta_engine, strategy_name, vt_symbol, setting)
self.bg = BarGenerator(self.on_bar)
self.am = ArrayManager(size=100)
# 指标变量
self.current_score = 0
self.market_strength = 0
self.supertrend_value = 0
def on_init(self):
"""
策略初始化
"""
self.write_log("策略初始化")
self.load_bar(100)
def on_start(self):
"""
策略启动
"""
self.write_log("策略启动")
def on_stop(self):
"""
策略停止
"""
self.write_log("策略停止")
def on_tick(self, tick: TickData):
"""
Tick数据更新
"""
self.bg.update_tick(tick)
def calculate_market_strength(self):
"""计算市场强度指标"""
close_change = self.am.close_array[1:] - self.am.close_array[:-1]
up_closes = 0
dn_closes = 0
for i in range(self.length):
if close_change[-i-1] > 0:
up_closes += close_change[-i-1]
else:
dn_closes += close_change[-i-1]
sum_change = np.sum(close_change[-self.length:])
if sum_change >= 0:
self.market_strength = (sum_change / up_closes * 100) if up_closes != 0 else 0
else:
self.market_strength = (sum_change / abs(dn_closes) * 100) if dn_closes != 0 else 0
return self.market_strength <= -self.entry_strength # 改为判断下跌强度
def calculate_supertrend(self):
"""计算SuperTrend指标"""
atr = talib.ATR(self.am.high_array, self.am.low_array,
self.am.close_array, self.supertrend_period)
basic_upper = (self.am.high_array + self.am.low_array) / 2 + self.supertrend_factor * atr
basic_lower = (self.am.high_array + self.am.low_array) / 2 - self.supertrend_factor * atr
# 简化的SuperTrend计算
self.supertrend_value = basic_upper[-1] # 改为上轨
return self.am.close_array[-1] < self.supertrend_value # 改为判断价格低于上轨
def calculate_score(self):
"""
计算综合得分
"""
score = 0
# MACD条件 - 空头信号
# 使用talib直接计算MACD
macd, signal, hist = talib.MACD(
self.am.close_array,
fastperiod=self.macd_fast_period,
slowperiod=self.macd_slow_period,
signalperiod=self.macd_signal_period
)
if not np.isnan(macd[-1]) and not np.isnan(signal[-1]):
if macd[-1] < signal[-1]: # 空头信号
score += 1
# RSI条件 - 空头信号
rsi = talib.RSI(self.am.close_array, timeperiod=self.rsi_period)
if not np.isnan(rsi[-1]) and rsi[-1] < 50:
score += 1
# Stochastic条件 - 空头信号
k, d = talib.STOCH(
self.am.high_array,
self.am.low_array,
self.am.close_array,
fastk_period=self.stoch_k_period,
slowk_period=self.stoch_k_smooth,
slowd_period=self.stoch_d_smooth
)
if not np.isnan(k[-1]) and k[-1] < 50:
score += 1
# CCI条件 - 空头信号
cci = talib.CCI(
self.am.high_array,
self.am.low_array,
self.am.close_array,
timeperiod=self.cci_period
)
if not np.isnan(cci[-1]) and cci[-1] < 0:
score += 1
# Supertrend条件 - 空头信号
if self.calculate_supertrend():
score += 1
# 市场强度条件 - 空头信号
if self.calculate_market_strength():
score += 1
return score
def on_bar(self, bar: BarData):
"""
K线更新回调
"""
self.am.update_bar(bar)
if not self.am.inited:
return
# 计算当前得分
self.current_score = self.calculate_score()
# 交易信号
if self.current_score >= self.total_score and not self.pos:
self.short(bar.close_price - 5, 1) # 改为做空
elif self.current_score == 0 and self.pos < 0: # 改为判断空仓
self.cover(bar.close_price + 5, abs(self.pos)) # 改为平空
self.put_event()
def on_trade(self, trade: TradeData):
"""
成交回调
"""
self.put_event()
def on_order(self, order: OrderData):
"""
委托回调
"""
pass
def on_stop_order(self, stop_order: StopOrder):
"""
停止单回调
"""
pass