增加交易策略、交易指标、量化库代码等文件夹

This commit is contained in:
Win_home
2025-04-27 15:54:09 +08:00
parent ca3b209096
commit f57150dae8
589 changed files with 854346 additions and 1757 deletions

View File

@@ -0,0 +1,132 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'vnpy_ctastrategy.strategies.vip09'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[2], line 5\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mvnpy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtrader\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01moptimize\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m OptimizationSetting\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mvnpy_ctastrategy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mbacktesting\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m BacktestingEngine\n\u001b[1;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mvnpy_ctastrategy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mstrategies\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mvip09\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m vip09\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# from vip09 import vip09\u001b[39;00m\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'vnpy_ctastrategy.strategies.vip09'"
]
}
],
"source": [
"from datetime import datetime\n",
"\n",
"from vnpy.trader.optimize import OptimizationSetting\n",
"from vnpy_ctastrategy.backtesting import BacktestingEngine\n",
"# from vnpy_ctastrategy.strategies.vip09 import vip09\n",
"from vip09 import vip09"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"engine = BacktestingEngine()\n",
"engine.set_parameters(\n",
" vt_symbol=\"rb00.SHFE\",\n",
" interval=\"1m\",\n",
" start=datetime(2020, 1, 1),\n",
" end=datetime(2024, 3, 21),\n",
" rate=1.5/10000,\n",
" slippage=1,\n",
" size=10,\n",
" pricetick=1,\n",
" capital=1_000_00,\n",
")\n",
"engine.add_strategy(vip09, {})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"engine.load_data()\n",
"engine.run_backtesting()\n",
"df = engine.calculate_result()\n",
"engine.calculate_statistics()\n",
"engine.show_chart()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"'''用于参数优化'''\n",
"# setting = OptimizationSetting()\n",
"# setting.set_target(\"sharpe_ratio\")\n",
"# setting.add_parameter(\"Length\", 5, 100, 5)\n",
"# setting.add_parameter(\"N\", 5, 100, 5)\n",
"# setting.add_parameter(\"X\", 1, 20, 1)\n",
"# setting.add_parameter(\"TS\", 5, 100, 5)\n",
"# from multiprocessing import cpu_count\n",
"# # 获取 CPU 核心数量\n",
"# num_cores = cpu_count()\n",
"# print(f\"获取 CPU 核心数量:\",round(num_cores/2))\n",
"# engine.run_ga_optimization(setting, max_workers=round(num_cores/2))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"#engine.run_bf_optimization(setting)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"vscode": {
"interpreter": {
"hash": "1b43cb0bd93d5abbadd54afed8252f711d4681fe6223ad6b67ffaee289648f85"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}